阿多米安分解法
数学
拉普拉斯变换
独特性
分解法(排队论)
趋同(经济学)
应用数学
非线性系统
弗雷德霍姆积分方程
Volterra积分方程
数学分析
积分方程
分解
Volterra方程
微分方程
拉普拉斯方程
生物
离散数学
物理
量子力学
经济
经济增长
生态学
作者
Ahmed A. Hamoud,Kirtiwant P. Ghadle
出处
期刊:Journal of Mathematical Modeling
日期:2018-07-01
卷期号:6 (1): 91-104
被引量:7
标识
DOI:10.22124/jmm.2018.2826
摘要
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formally determined by analytical approximate. Moreover, the paper proves the convergence and uniqueness of the solution. Finally, this study includes an example to demonstrate the validity and applicability of the proposed techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI