Quantum superhet based on microwave-dressed Rydberg atoms.

里德伯公式 量子缺陷 量子 主量子数 里德堡州 里德堡常数 Atom(片上系统)
作者
Mingyong Jing,Ying Hu,Jie Ma,Hao Zhang,Linjie Zhang,Liantuan Xiao,Suotang Jia
出处
期刊:arXiv: Atomic Physics 被引量:53
标识
DOI:10.1038/s41567-020-0918-5
摘要

The highly sensitive, phase- and frequency-resolved detection of microwave electric fields is of central importance for diverse fields ranging from astronomy, remote sensing, communication and microwave quantum technology. However, present quantum sensing of microwave electric fields primarily relies on atom-based electrometers only enabling amplitude measurement. Moreover, the best sensitivity of atom-based electrometers is limited by photon shot noise to few $\mu$Vcm$^{-1}$Hz$^{-1/2}$: While going beyond is in principle possible by using squeezed light or Schrodinger-cat state, the former is very challenging for atomic experiments while the latter is feasible in all but very small atomic systems. Here we report a novel microwave electric field quantum sensor termed as quantum superhet, which, for the first time, enables experimental measurement of phase and frequency, and makes a sensitivity few tens of nVcm$^{-1}$Hz$^{-1/2}$ readily accessible for current experiments. This sensor is based on microwave-dressed Rydberg atoms and tailored optical spectrum, with very favorable scalings on sensitivity gains. We can experimentally achieve a sensitivity of $55$ nVcm$^{-1}$Hz$^{-1/2}$, with the minimum detectable field being three orders of magnitude smaller than existing quantum electrometers. We also measure phase and frequency, being able to reach a frequency accuracy of few tens of $\mu$Hz for microwave field of just few tens of nVcm$^{-1}$. Our technique can be also applied to sense electric fields at terahertz or radio frequency. This work is a first step towards realizing the long sought-after electromagnetic-wave quantum sensors with quantum projection noise limited sensitivity, promising broad applications such as in radio telescope, terahertz communication and quantum control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果书文发布了新的文献求助10
刚刚
糯米团子发布了新的文献求助10
1秒前
鬼鬼完成签到,获得积分10
3秒前
仁爱发卡发布了新的文献求助10
3秒前
3秒前
cxy完成签到,获得积分10
3秒前
NK001发布了新的文献求助10
4秒前
贺豪完成签到,获得积分10
4秒前
aka小满完成签到,获得积分10
5秒前
lian关注了科研通微信公众号
6秒前
VV2001完成签到,获得积分10
7秒前
蛋炒饭香喷喷儿完成签到,获得积分10
8秒前
上官若男应助热情的紫菜采纳,获得10
9秒前
9秒前
超帅路灯应助Andy采纳,获得50
15秒前
15秒前
Jasper应助加菲丰丰采纳,获得10
15秒前
昏睡的寄云完成签到,获得积分10
17秒前
18秒前
whykm91完成签到 ,获得积分10
18秒前
20秒前
科研女仆完成签到 ,获得积分10
20秒前
乐乐应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
咖啡豆应助科研通管家采纳,获得70
21秒前
薰硝壤应助佳佳采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
852应助科研通管家采纳,获得10
21秒前
22秒前
薰硝壤应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
rhx123456发布了新的文献求助10
22秒前
52cc000发布了新的文献求助10
22秒前
weitaiyy完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706