Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder

焊接 材料科学 共晶体系 抗剪强度(土壤) 箔法 冶金 复合材料 微观结构 扫描电子显微镜 基质(水族馆) 环境科学 海洋学 地质学 土壤科学 土壤水分
作者
Lifang Hu,Yongzhi Xue,Hao Wang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:789: 558-566 被引量:26
标识
DOI:10.1016/j.jallcom.2019.02.257
摘要

A new coupling technique for glass-metal joining was presented in this paper. Firstly, the glass and Al were successfully bonded by anodic bonding process, then the joining between Al and Cu was achieved by soldering with eutectic Sn-9Zn solder. The microstructures of glass/Al interface and solder joint were investigated by using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the interface evolution mechanism as well as the correlation between the glass/Cu joining strength and the interface morphology were discussed. The results showed that a sodium-depleted layer with a thickness of 546 nm was formed on the glass/Al interface at 400 °C/1000 V. Al-Sn-Zn solid solution, Cu5Zn8 and CuZn5 reaction layers were detected on Al/solder interface and Cu/solder interface respectively. As the soldering time increased, needle-like (Al)' phases and round (Al)'' phases were observed in sequence near Al/solder interface; at the same time, the thickness of Cu5Zn8 and CuZn5 layers increased accordingly. When the soldering time was 10 min, micro grooves on Al foil were observed, and CuZn5 IMCs spalled off and dispersed into liquid solder, which deteriorated the joint strength. During the soldering process, the whole interface evolution could be divided into four stages and was analyzed explicitly. Shear tests indicated the fracture mainly occurred at solder/Cu interface and a small amount of Al foil was torn off the glass substrate when soldering time exceeded 5 min. The shear strength increased at first and then reduced with the prolongation of soldering time, and the maximum strength was 12.7 MPa when the joint was achieved at 240 °C for 5 min.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力盼晴完成签到,获得积分10
刚刚
汉堡包应助不怕困难采纳,获得10
1秒前
开放巧荷关注了科研通微信公众号
1秒前
1秒前
欧小仙发布了新的文献求助10
2秒前
2秒前
2秒前
鱼鱼发布了新的文献求助10
2秒前
2秒前
HAHAHA完成签到,获得积分10
3秒前
11111发布了新的文献求助10
3秒前
冷静的高烽完成签到,获得积分10
3秒前
3秒前
葱饼完成签到 ,获得积分10
3秒前
凯凯发布了新的文献求助10
4秒前
英姑应助长言采纳,获得10
4秒前
wendy完成签到,获得积分10
5秒前
5秒前
迷人书蝶发布了新的文献求助10
5秒前
5秒前
5秒前
aka发布了新的文献求助20
6秒前
feng完成签到,获得积分10
7秒前
yanj520925发布了新的文献求助10
7秒前
7秒前
深情安青应助巫雍采纳,获得10
9秒前
月亮moon发布了新的文献求助10
9秒前
欣欣发布了新的文献求助20
9秒前
科研通AI6应助lulululi采纳,获得10
10秒前
10秒前
10秒前
sh0w发布了新的文献求助10
10秒前
春山发布了新的文献求助10
10秒前
10秒前
Fan发布了新的文献求助10
10秒前
绕越完成签到,获得积分20
11秒前
旺仔发发完成签到,获得积分20
11秒前
可靠书包发布了新的文献求助10
11秒前
HHHHHHH完成签到,获得积分20
12秒前
听雨发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616