A New Failure Mechanism of Inter Layer Dielectric Crack

引线键合 材料科学 失效模式及影响分析 复合材料 薄脆饼 失效机理 结构工程 炸薯条 电气工程 光电子学 工程类
作者
Haiyan Liu,Xiangyang Li,Sean Xin Xu,Jun Li
标识
DOI:10.1109/eptc.2018.8654345
摘要

Converting gold wire to copper wire for IC packaging is a big trend recently which has both advantage and disadvantage. Cu wire is good for packaging cost saving to current semiconductor industry, but it may also create quality and reliability issues. Since Cu is much harder and stiffer material than Au, it may require a greater force and USG power to insure good bonding to pad, and a larger bond force and USG power in turn increases the risk of ILD crack during the bonding process. The wafer tech in this study is CMOS40nm, Al thickness is 28KA, with 53um pad opening. The ILD crack mechanism which is discussed in this paper is different. The failure mode during ATE test is leakage failure. After de-cap and cratering test, there is no cratering/damage on failed pad under microscope check. FIB was performed on failed pad and confirmed the damage between Metal 2 and Metal 3, and no damage on top metal. The link between IV curve trace and ILD crack was studied. The root cause of the ILD crack was studied, material and machine variation were also take into consideration. Parameter optimization DOE was done. Key wire bond parameters include the initial force, USG power etc. The wire pull, ball shear, IMC, Al remnant etc. are key response. The result shows that lower USG and higher initial force can get better wire bond performance. The die was packaged into a MAPBGA package. Electrical test was performed on the assembled parts at T0, post MSL3/260degree C, post 264h UHST (110°C/85%RH), and post TC700cycles (-55°C to 150°C). All units post stress clean passed without any failure. The overall leakage failure rate at ATE test is reduced.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助明天会更好采纳,获得10
刚刚
顺利的琳发布了新的文献求助10
1秒前
2秒前
2秒前
nuonuoweng完成签到,获得积分10
2秒前
BOMB发布了新的文献求助30
3秒前
苗条世德完成签到,获得积分10
3秒前
3秒前
3秒前
Maize Man完成签到,获得积分10
3秒前
单纯寒凝发布了新的文献求助10
5秒前
5秒前
Ava应助称心凡霜采纳,获得10
6秒前
快乐小瑶发布了新的文献求助10
6秒前
6秒前
英俊的铭应助sxmt123456789采纳,获得30
7秒前
搜集达人应助伶俐的夜梦采纳,获得50
7秒前
煤炭不甜完成签到,获得积分10
7秒前
9秒前
万能图书馆应助矜持采纳,获得10
9秒前
kekehuang关注了科研通微信公众号
9秒前
9秒前
霸气若男发布了新的文献求助10
10秒前
孙嘉畯发布了新的文献求助10
10秒前
lbchanger完成签到 ,获得积分10
10秒前
Lisianthus发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
YE完成签到 ,获得积分10
11秒前
领导范儿应助下北沢采纳,获得10
12秒前
gaoww发布了新的文献求助10
12秒前
精明凡雁完成签到,获得积分10
12秒前
我是第一名完成签到,获得积分10
12秒前
12秒前
13秒前
宛雷雅发布了新的文献求助30
14秒前
冷风发布了新的文献求助10
14秒前
多多发布了新的文献求助10
14秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110