CNV_IFTV: An Isolation Forest and Total Variation-Based Detection of CNVs from Short-Read Sequencing Data

拷贝数变化 计算机科学 分离(微生物学) 异常检测 变化(天文学) 数据挖掘 基因组 生物 生物信息学 遗传学 基因 天体物理学 物理
作者
Xiguo Yuan,Jiaao Yu,Jianing Xi,Liying Yang,Junliang Shang,Zhe Li,Junbo Duan
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 539-549 被引量:43
标识
DOI:10.1109/tcbb.2019.2920889
摘要

Accurate detection of copy number variations (CNVs) from short-read sequencing data is challenging due to the uneven distribution of reads and the unbalanced amplitudes of gains and losses. The direct use of read depths to measure CNVs tends to limit performance. Thus, robust computational approaches equipped with appropriate statistics are required to detect CNV regions and boundaries. This study proposes a new method called CNV_IFTV to address this need. CNV_IFTV assigns an anomaly score to each genome bin through a collection of isolation trees. The trees are trained based on isolation forest algorithm through conducting subsampling from measured read depths. With the anomaly scores, CNV_IFTV uses a total variation model to smooth adjacent bins, leading to a denoised score profile. Finally, a statistical model is established to test the denoised scores for calling CNVs. CNV_IFTV is tested on both simulated and real data in comparison to several peer methods. The results indicate that the proposed method outperforms the peer methods. CNV_IFTV is a reliable tool for detecting CNVs from short-read sequencing data even for low-level coverage and tumor purity. The detection results on tumor samples can aid to evaluate known cancer genes and to predict target drugs for disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胖悦完成签到,获得积分10
1秒前
呸呸晓鹏完成签到,获得积分20
1秒前
Owen应助hihi采纳,获得10
1秒前
2秒前
清爽泥猴桃完成签到,获得积分10
2秒前
李健应助阿蒙采纳,获得30
2秒前
2秒前
hahhh7发布了新的文献求助10
2秒前
斯文败类应助热情蜜蜂采纳,获得10
2秒前
汉堡包应助moooonu采纳,获得10
2秒前
Langsam完成签到,获得积分10
3秒前
刘先生发布了新的文献求助10
4秒前
lunar发布了新的文献求助10
4秒前
18922406869发布了新的文献求助10
4秒前
4秒前
英俊的铭应助丁小只采纳,获得30
4秒前
4秒前
5秒前
5秒前
叶子发布了新的文献求助10
6秒前
SUS发布了新的文献求助10
6秒前
6秒前
CPS发布了新的文献求助10
7秒前
68完成签到,获得积分10
7秒前
8秒前
wonder123完成签到,获得积分10
10秒前
10秒前
Pauline发布了新的文献求助10
11秒前
11秒前
李耐寒完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
xxx完成签到,获得积分10
12秒前
zhouzhou发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052