CNV_IFTV: An Isolation Forest and Total Variation-Based Detection of CNVs from Short-Read Sequencing Data

拷贝数变化 计算机科学 分离(微生物学) 异常检测 变化(天文学) 数据挖掘 基因组 生物 生物信息学 遗传学 基因 天体物理学 物理
作者
Xiguo Yuan,Jiaao Yu,Jianing Xi,Liying Yang,Junliang Shang,Zhe Li,Junbo Duan
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 539-549 被引量:44
标识
DOI:10.1109/tcbb.2019.2920889
摘要

Accurate detection of copy number variations (CNVs) from short-read sequencing data is challenging due to the uneven distribution of reads and the unbalanced amplitudes of gains and losses. The direct use of read depths to measure CNVs tends to limit performance. Thus, robust computational approaches equipped with appropriate statistics are required to detect CNV regions and boundaries. This study proposes a new method called CNV_IFTV to address this need. CNV_IFTV assigns an anomaly score to each genome bin through a collection of isolation trees. The trees are trained based on isolation forest algorithm through conducting subsampling from measured read depths. With the anomaly scores, CNV_IFTV uses a total variation model to smooth adjacent bins, leading to a denoised score profile. Finally, a statistical model is established to test the denoised scores for calling CNVs. CNV_IFTV is tested on both simulated and real data in comparison to several peer methods. The results indicate that the proposed method outperforms the peer methods. CNV_IFTV is a reliable tool for detecting CNVs from short-read sequencing data even for low-level coverage and tumor purity. The detection results on tumor samples can aid to evaluate known cancer genes and to predict target drugs for disease diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Amy发布了新的文献求助20
1秒前
2秒前
酷炫的八宝粥完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
英俊的铭应助Charon采纳,获得10
4秒前
5秒前
5秒前
xiaobai发布了新的文献求助10
5秒前
小黄不熬夜完成签到 ,获得积分10
5秒前
hxm发布了新的文献求助10
5秒前
7秒前
小庄庄庄完成签到,获得积分10
7秒前
包容的狗发布了新的文献求助30
7秒前
YaoHe完成签到,获得积分10
8秒前
8秒前
SciGPT应助黄少阳采纳,获得10
9秒前
lulu发布了新的文献求助10
9秒前
考拉完成签到,获得积分10
10秒前
10秒前
11秒前
flyfly完成签到,获得积分10
12秒前
YaoHe发布了新的文献求助10
12秒前
风清扬发布了新的文献求助30
12秒前
soufle完成签到,获得积分10
13秒前
ymm216688给ymm216688的求助进行了留言
14秒前
15秒前
受伤芝麻发布了新的文献求助10
16秒前
丘比特应助Felixsun采纳,获得10
16秒前
17秒前
19秒前
20秒前
青枣不甜完成签到,获得积分10
21秒前
21秒前
ZLQ发布了新的文献求助20
22秒前
Jasper应助神勇元枫采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
Yuu发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713179
求助须知:如何正确求助?哪些是违规求助? 5214101
关于积分的说明 15269888
捐赠科研通 4864977
什么是DOI,文献DOI怎么找? 2611794
邀请新用户注册赠送积分活动 1562041
关于科研通互助平台的介绍 1519248