Spectral Graph Convolutions for Population-based Disease Prediction

成对比较 计算机科学 编码 图形 人工智能 模式识别(心理学) 人口 特征(语言学) 机器学习 数据挖掘 理论计算机科学 生物化学 化学 语言学 人口学 哲学 社会学 基因
作者
Sarah Parisot,Sofia Ira Ktena,Enzo Ferrante,Matthew Lee,Ricardo Guerrerro Moreno,Ben Glocker,Daniel Rueckert
出处
期刊:Cornell University - arXiv 被引量:3
摘要

Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects' individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的婴发布了新的文献求助10
刚刚
1秒前
Takk发布了新的文献求助10
2秒前
2秒前
pcr163应助淡淡明辉采纳,获得100
2秒前
durian完成签到,获得积分10
3秒前
董石美完成签到,获得积分10
3秒前
4秒前
5秒前
SciGPT应助陈椅子的求学采纳,获得10
5秒前
6秒前
拼搏的松鼠完成签到,获得积分10
6秒前
共享精神应助暴走采纳,获得10
6秒前
手残症发布了新的文献求助10
6秒前
dfghjkl发布了新的文献求助10
6秒前
奋斗的剑完成签到 ,获得积分10
7秒前
共享精神应助钢牙刷采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
xuuuu发布了新的文献求助10
8秒前
科研通AI5应助Takk采纳,获得10
9秒前
10秒前
zp发布了新的文献求助30
10秒前
健康的夏青完成签到,获得积分10
10秒前
NZH发布了新的文献求助10
11秒前
黄瓜仔发布了新的文献求助10
11秒前
11秒前
xingmeng完成签到,获得积分10
12秒前
处处铃铛响完成签到,获得积分10
12秒前
12秒前
小蘑菇应助LI采纳,获得10
13秒前
bxj发布了新的文献求助10
13秒前
牛肉酱完成签到,获得积分20
13秒前
15秒前
啦啦啦完成签到,获得积分10
15秒前
15秒前
炙热发布了新的文献求助10
15秒前
qqqdewq发布了新的文献求助10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473757
求助须知:如何正确求助?哪些是违规求助? 3066244
关于积分的说明 9097846
捐赠科研通 2757384
什么是DOI,文献DOI怎么找? 1512877
邀请新用户注册赠送积分活动 699198
科研通“疑难数据库(出版商)”最低求助积分说明 698863