Feature extraction of four-class motor imagery EEG signals based on functional brain network

计算机科学 运动表象 脑-机接口 人工智能 特征提取 判别式 模式识别(心理学) 脑电图 接口(物质) 特征(语言学) 哲学 最大气泡压力法 气泡 精神科 并行计算 语言学 心理学
作者
Qingsong Ai,Anqi Chen,Kun Chen,Quan Liu,Tichao Zhou,Sijin Xin,Ze Ji
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (2): 026032-026032 被引量:72
标识
DOI:10.1088/1741-2552/ab0328
摘要

Objective. A motor-imagery-based brain–computer interface (MI-BCI) provides an alternative way for people to interface with the outside world. However, the classification accuracy of MI signals remains challenging, especially with an increased number of classes and the presence of high variations with data from multiple individual people. This work investigates electroencephalogram (EEG) signal processing techniques, aiming to enhance the classification performance of multiple MI tasks in terms of tackling the challenges caused by the vast variety of subjects. Approach. This work introduces a novel method to extract discriminative features by combining the features of functional brain networks with two other feature extraction algorithms: common spatial pattern (CSP) and local characteristic-scale decomposition (LCD). After functional brain networks are established from the MI EEG signals of the subjects, the measures of degree in the binary networks are extracted as additional features and fused with features in the frequency and spatial domains extracted by the CSP and LCD algorithms. A real-time BCI robot control system is designed and implemented with the proposed method. Subjects can control the movement of the robot through four classes of MI tasks. Both the BCI competition IV dataset 2a and real-time data acquired in our designed system are used to validate the performance of the proposed method. Main results. As for the offline data experiment results, the average classification accuracy of the proposed method reaches 79.7%, outperforming the majority of popular algorithms. Experimental results with real-time data also prove the proposed method to be highly promising in its real-time performance. Significance. The experimental results show that our proposed method is robust in extracting discriminative brain activity features when performing different MI tasks, hence improving the classification accuracy in four-class MI tasks. The high classification accuracy and low computational demand show a considerable practicality for real-time rehabilitation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ever1997完成签到,获得积分10
2秒前
NexusExplorer应助清脆的映天采纳,获得10
2秒前
3秒前
volcano完成签到 ,获得积分10
3秒前
3秒前
Jason完成签到,获得积分10
3秒前
4秒前
5秒前
桐桐应助Eurus采纳,获得30
5秒前
白马不黑发布了新的文献求助10
7秒前
宋1234完成签到,获得积分20
7秒前
xm发布了新的文献求助10
8秒前
八岁完成签到 ,获得积分10
8秒前
万能图书馆应助小橙子采纳,获得10
8秒前
9秒前
Ava应助ufofly730采纳,获得10
9秒前
研友_VZG7GZ应助蜡笔小韩采纳,获得10
10秒前
星魂发布了新的文献求助10
10秒前
HarryWando发布了新的文献求助10
10秒前
清脆的映天完成签到,获得积分10
10秒前
虞剑发布了新的文献求助10
11秒前
ever1997发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助Eurus采纳,获得30
12秒前
大气早晨完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
yk关闭了yk文献求助
14秒前
Eatanicecube完成签到,获得积分10
15秒前
领导范儿应助刘鹏宇采纳,获得10
15秒前
自由秋完成签到,获得积分10
15秒前
丘比特应助早早采纳,获得10
16秒前
小胡完成签到 ,获得积分10
16秒前
yyanxuemin919完成签到,获得积分20
16秒前
17秒前
情怀应助大气早晨采纳,获得10
18秒前
18秒前
飞虎发布了新的文献求助10
18秒前
小二郎应助xm采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794