A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier

计算机科学 分类器(UML) k-最近邻算法 训练集 模式识别(心理学) 人工智能 数据挖掘 机器学习
作者
Yidi Wang,Zhibin Pan,Yiwei Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1544-1556 被引量:48
标识
DOI:10.1109/tnnls.2019.2920864
摘要

The k -nearest neighbor (KNN) rule is a successful technique in pattern classification due to its simplicity and effectiveness. As a supervised classifier, KNN classification performance usually suffers from low-quality samples in the training data set. Thus, training data set cleaning (TDC) methods are needed for enhancing the classification accuracy by cleaning out noisy, or even wrong, samples in the original training data set. In this paper, we propose a classification ability ranking (CAR)-based TDC method to improve the performance of a KNN classifier, namely CAR-based TDC method. The proposed classification ability function ranks a training sample in terms of its contribution to correctly classify other training samples as a KNN through the leave-one-out (LV1) strategy in the cleaning stage. The training sample that likely misclassifies the other samples during the KNN classifications according to the LV1 strategy is considered to have lower classification ability and will be cleaned out from the original training data set. Extensive experiments, based on ten real-world data sets, show that the proposed CAR-based TDC method can significantly reduce the classification error rates of KNN-based classifiers, while reducing computational complexity thanks to a smaller cleaned training data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laa发布了新的文献求助10
1秒前
爆米花应助文章仙人采纳,获得10
1秒前
2秒前
3秒前
分子遗传小菜鸟完成签到,获得积分10
4秒前
你猜猜看发布了新的文献求助10
4秒前
小余同学发布了新的文献求助10
5秒前
科学完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
uki发布了新的文献求助10
7秒前
科目三应助纳斯达克采纳,获得10
9秒前
曾经的背包完成签到 ,获得积分10
9秒前
CC发布了新的文献求助10
10秒前
10秒前
yznfly应助欢喜的跳跳糖采纳,获得30
11秒前
未完成完成签到,获得积分10
11秒前
彭于彦祖应助大猫采纳,获得50
11秒前
11秒前
淡墨无殇发布了新的文献求助10
11秒前
12秒前
王九八发布了新的文献求助10
12秒前
HWT关注了科研通微信公众号
13秒前
田様应助VDC采纳,获得10
13秒前
14秒前
iNk发布了新的文献求助10
14秒前
3216发布了新的文献求助20
15秒前
zhaohu47完成签到,获得积分10
16秒前
17秒前
无私冷雪发布了新的文献求助10
17秒前
冷笑完成签到,获得积分10
17秒前
18秒前
绍兴发布了新的文献求助20
19秒前
bkagyin应助XianyunWang采纳,获得10
20秒前
Jasper应助初静采纳,获得10
20秒前
王来敏完成签到,获得积分10
21秒前
21秒前
优美傲安完成签到,获得积分10
22秒前
共享精神应助电闪采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352