A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier

计算机科学 分类器(UML) k-最近邻算法 训练集 模式识别(心理学) 人工智能 数据挖掘 机器学习
作者
Yidi Wang,Zhibin Pan,Yiwei Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1544-1556 被引量:48
标识
DOI:10.1109/tnnls.2019.2920864
摘要

The k -nearest neighbor (KNN) rule is a successful technique in pattern classification due to its simplicity and effectiveness. As a supervised classifier, KNN classification performance usually suffers from low-quality samples in the training data set. Thus, training data set cleaning (TDC) methods are needed for enhancing the classification accuracy by cleaning out noisy, or even wrong, samples in the original training data set. In this paper, we propose a classification ability ranking (CAR)-based TDC method to improve the performance of a KNN classifier, namely CAR-based TDC method. The proposed classification ability function ranks a training sample in terms of its contribution to correctly classify other training samples as a KNN through the leave-one-out (LV1) strategy in the cleaning stage. The training sample that likely misclassifies the other samples during the KNN classifications according to the LV1 strategy is considered to have lower classification ability and will be cleaned out from the original training data set. Extensive experiments, based on ten real-world data sets, show that the proposed CAR-based TDC method can significantly reduce the classification error rates of KNN-based classifiers, while reducing computational complexity thanks to a smaller cleaned training data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woshiwuziq发布了新的文献求助10
刚刚
刚刚
你柿不柿莓柿完成签到,获得积分10
1秒前
2秒前
离夜发布了新的文献求助10
2秒前
EdwardKING发布了新的文献求助10
2秒前
3秒前
李乐完成签到,获得积分20
3秒前
3秒前
运敬完成签到 ,获得积分10
3秒前
科研通AI2S应助十一采纳,获得10
3秒前
肉肉发布了新的文献求助10
4秒前
4秒前
漂亮夏兰完成签到 ,获得积分10
4秒前
所所应助猪猪hero采纳,获得10
4秒前
4秒前
又晴发布了新的文献求助10
4秒前
4秒前
zwk发布了新的文献求助10
4秒前
4秒前
淡定发布了新的文献求助10
5秒前
plutosmall发布了新的文献求助10
5秒前
sora98完成签到 ,获得积分10
5秒前
在水一方应助owlhealth采纳,获得10
5秒前
劲秉发布了新的文献求助10
6秒前
6秒前
LK8669090完成签到,获得积分10
8秒前
8秒前
8秒前
zhangpeng发布了新的文献求助10
8秒前
Alang完成签到 ,获得积分10
9秒前
9秒前
acrobat应助奥利奥采纳,获得20
9秒前
守望阳光1完成签到,获得积分10
10秒前
Hcoojzk发布了新的文献求助10
10秒前
汪汪完成签到,获得积分10
10秒前
EdwardKING完成签到,获得积分10
10秒前
GC发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630