A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier

计算机科学 分类器(UML) k-最近邻算法 训练集 模式识别(心理学) 人工智能 数据挖掘 机器学习
作者
Yidi Wang,Zhibin Pan,Yiwei Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1544-1556 被引量:48
标识
DOI:10.1109/tnnls.2019.2920864
摘要

The k -nearest neighbor (KNN) rule is a successful technique in pattern classification due to its simplicity and effectiveness. As a supervised classifier, KNN classification performance usually suffers from low-quality samples in the training data set. Thus, training data set cleaning (TDC) methods are needed for enhancing the classification accuracy by cleaning out noisy, or even wrong, samples in the original training data set. In this paper, we propose a classification ability ranking (CAR)-based TDC method to improve the performance of a KNN classifier, namely CAR-based TDC method. The proposed classification ability function ranks a training sample in terms of its contribution to correctly classify other training samples as a KNN through the leave-one-out (LV1) strategy in the cleaning stage. The training sample that likely misclassifies the other samples during the KNN classifications according to the LV1 strategy is considered to have lower classification ability and will be cleaned out from the original training data set. Extensive experiments, based on ten real-world data sets, show that the proposed CAR-based TDC method can significantly reduce the classification error rates of KNN-based classifiers, while reducing computational complexity thanks to a smaller cleaned training data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助顺心人达采纳,获得10
2秒前
霍焱发布了新的文献求助10
3秒前
科研通AI6.1应助Dr.c采纳,获得10
6秒前
碧蓝的安露完成签到 ,获得积分10
7秒前
hhhhxxxx完成签到,获得积分10
9秒前
11秒前
陈豆豆完成签到 ,获得积分10
12秒前
甜甜凉面完成签到,获得积分10
13秒前
懵懂的梦秋完成签到,获得积分10
13秒前
L_chen发布了新的文献求助10
14秒前
李爱国应助zl987采纳,获得10
16秒前
18秒前
Henry完成签到,获得积分10
18秒前
estrella完成签到 ,获得积分10
19秒前
句灼完成签到,获得积分10
20秒前
kevinqpp发布了新的文献求助10
22秒前
22秒前
L_chen完成签到,获得积分20
22秒前
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Adc应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
Adc应助科研通管家采纳,获得10
28秒前
freebird应助科研通管家采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得30
28秒前
28秒前
马迦南完成签到 ,获得积分10
29秒前
kimiwanano完成签到,获得积分10
29秒前
盼盼完成签到,获得积分10
31秒前
Dr.c发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733153
求助须知:如何正确求助?哪些是违规求助? 5346222
关于积分的说明 15323096
捐赠科研通 4878315
什么是DOI,文献DOI怎么找? 2621157
邀请新用户注册赠送积分活动 1570280
关于科研通互助平台的介绍 1527163