A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier

计算机科学 分类器(UML) k-最近邻算法 训练集 模式识别(心理学) 人工智能 数据挖掘 机器学习
作者
Yidi Wang,Zhibin Pan,Yiwei Pan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (5): 1544-1556 被引量:48
标识
DOI:10.1109/tnnls.2019.2920864
摘要

The k -nearest neighbor (KNN) rule is a successful technique in pattern classification due to its simplicity and effectiveness. As a supervised classifier, KNN classification performance usually suffers from low-quality samples in the training data set. Thus, training data set cleaning (TDC) methods are needed for enhancing the classification accuracy by cleaning out noisy, or even wrong, samples in the original training data set. In this paper, we propose a classification ability ranking (CAR)-based TDC method to improve the performance of a KNN classifier, namely CAR-based TDC method. The proposed classification ability function ranks a training sample in terms of its contribution to correctly classify other training samples as a KNN through the leave-one-out (LV1) strategy in the cleaning stage. The training sample that likely misclassifies the other samples during the KNN classifications according to the LV1 strategy is considered to have lower classification ability and will be cleaned out from the original training data set. Extensive experiments, based on ten real-world data sets, show that the proposed CAR-based TDC method can significantly reduce the classification error rates of KNN-based classifiers, while reducing computational complexity thanks to a smaller cleaned training data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向乞完成签到 ,获得积分10
刚刚
韭菜发布了新的文献求助10
刚刚
ludwig完成签到,获得积分10
刚刚
科研通AI5应助悦耳的冰枫采纳,获得10
1秒前
1秒前
2秒前
hqlran完成签到,获得积分10
2秒前
袅袅发布了新的文献求助10
2秒前
2秒前
爆米花应助小喵采纳,获得10
2秒前
3秒前
4秒前
xxx发布了新的文献求助10
4秒前
4秒前
胡说八道完成签到 ,获得积分10
4秒前
高兴帅哥完成签到,获得积分10
5秒前
7秒前
aslink完成签到,获得积分10
7秒前
Amon完成签到,获得积分10
7秒前
啊娴仔发布了新的文献求助10
7秒前
camellia发布了新的文献求助10
7秒前
万能图书馆应助狂野觅云采纳,获得10
7秒前
充电宝应助zino采纳,获得10
8秒前
8秒前
小可发布了新的文献求助10
8秒前
英姑应助酷酷的起眸采纳,获得10
9秒前
Blue_Pig发布了新的文献求助10
9秒前
科研小白完成签到,获得积分10
10秒前
sooya发布了新的文献求助20
11秒前
11秒前
tiddler完成签到,获得积分10
11秒前
科研通AI2S应助滴滴采纳,获得10
11秒前
wgx完成签到,获得积分20
11秒前
12秒前
爱静静应助Keep采纳,获得10
12秒前
12秒前
12秒前
小马甲应助韭菜采纳,获得10
13秒前
MADKAI发布了新的文献求助10
13秒前
机智的白猫完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759