微泡
细胞内
核糖核酸
脂质体
细胞生物学
生物物理学
细胞
小RNA
胚胎干细胞
化学
药物输送
材料科学
信使核糖核酸
纳米技术
外体
生物
生物化学
基因
作者
Woohyun Jo,J. Kim,Jaesung Yoon,Dawoon Jeong,Seonggeon Cho,Hoon Eui Jeong,Yae Jin Yoon,Sanguk Kim,Yong Song Gho,Jaeku Park
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2014-01-01
卷期号:6 (20): 12056-12064
被引量:187
摘要
Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI