氧化态
化学状态
X射线吸收光谱法
氧烷
同步辐射
同步加速器
X射线荧光
分析化学(期刊)
化学
荧光光谱法
吸收(声学)
荧光
材料科学
光谱学
硫黄
吸收光谱法
X射线光电子能谱
环境化学
光学
金属
核磁共振
有机化学
物理
量子力学
复合材料
作者
Hiram Castillo‐Michel,Ángel G. Díaz‐Sánchez,Alejandro Martínez‐Martínez,Bernhard Hesse
出处
期刊:Protein and Peptide Letters
[Bentham Science]
日期:2016-02-15
卷期号:23 (3): 291-299
被引量:10
标识
DOI:10.2174/0929866523666160108120117
摘要
Sulfur (S) is an essential macronutrient for all living organisms. A variety of organic and inorganic S species with oxidation states ranging from -2 to +6 exist. Today few spectroscopic and biochemical methods are used to investigate sulfur oxidation state and reactivity in biological samples. X-ray absorption near edge spectroscopy (XANES) is a very well suited spectroscopic technique to probe the oxidation state and the surrounding chemical environment of sulfur. Microspectroscopy beamlines, operating at almost all synchrotron facilities, allow the combination of XANES with X-ray fluorescence mapping (XRF). Using this approach distribution maps of S in complex biological samples (intact parts of tissue, or individual cells) can be obtained using XRF and its oxidation state can be probed in-situ (XANES). Moreover, XRF mapping at specific energies enables for chemical contrast of S at different oxidation states without the need of staining chemicals. This review introduces the basic concepts of synchrotron XRF and XANES and discusses the most recent applications in life science. Important methodological and technical issues will be discussed and results obtained in different complex biological samples will be presented. Keywords: Chemical imaging, core level spectroscopy, cysteine, cystine, elemental mapping, oxidation state, radiation damage.
科研通智能强力驱动
Strongly Powered by AbleSci AI