Investigation of Free Surface Damping Models With Applications to Gap Resonance Problems

消散 稳健性(进化) 机械 解算器 能量(信号处理) 控制理论(社会学) 计算机科学 物理 数学 数学优化 热力学 基因 量子力学 人工智能 化学 生物化学 控制(管理)
作者
Kevin Markeng,Torgeir Vada,Zhiyuan Pan
标识
DOI:10.1115/omae2017-61288
摘要

In this paper two methods for modelling the damping in a narrow gap are investigated. The first method is called the Pressure Damping Model. This method has been used in studies of wave energy devices. An attractive feature of this model is that the modified input is directly related to the energy dissipation in the gap, which means that if this dissipation is estimated the input to the model can be obtained directly. The idea of the method is to add a pressure input in the gap to suppress the resonant motion. A challenge with the method is that it contains a non-linear term. The second method is the Newtonian Cooling damping model. The method is based on introducing a dissipation term in the free surface boundary condition. This dissipation term contains a coefficient which is not directly related to the energy dissipation. Hence this method is not so easy to relate directly to the estimated energy dissipation. An advantage with this method is that it is linear and hence can be expected to be more robust. In the first part of the paper a 2-dimensional problem is investigated using both methods. In addition to the numerical performance and robustness, much focus is put on investigation of the energy balance in the solution, and we attempt to relate both models to the energy dissipation in the gap. In the second part the Newtonian cooling method is implemented in a 3-dimensional potential flow solver and it is shown that the method provides a robust way to handle the resonance problem. The method will give rise to a modified set of equations which are described. Two different problems are investigated with the 3D solver. First we look at a side-by-side problem, where the 3D results are also compared with 2D results. Finally, the moonpool problem is investigated by two different 3D solvers, a classical Green’s function based method and a Rankine solver. It is also shown how this damping model can be combined with a similar model on the internal waterplane to remove irregular frequencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PINK完成签到,获得积分10
刚刚
AronHUANG完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
AAA建材王总完成签到 ,获得积分10
1秒前
wnx001111发布了新的文献求助10
3秒前
张环完成签到,获得积分10
3秒前
skycool完成签到,获得积分10
4秒前
6秒前
可问春风完成签到,获得积分10
6秒前
强健的井完成签到 ,获得积分20
6秒前
知行者完成签到 ,获得积分10
6秒前
吃饱再睡完成签到 ,获得积分10
6秒前
噗噗完成签到 ,获得积分10
7秒前
米雪儿完成签到,获得积分10
8秒前
kermitds完成签到 ,获得积分10
9秒前
科研通AI6应助wnx001111采纳,获得10
10秒前
英俊的铭应助王欣瑶采纳,获得10
12秒前
magic_sweets完成签到,获得积分10
13秒前
Lucas应助想养一只猫采纳,获得10
14秒前
邢00完成签到 ,获得积分10
14秒前
十一完成签到,获得积分10
14秒前
1111完成签到 ,获得积分10
14秒前
萧然完成签到,获得积分10
15秒前
月桂氮卓酮完成签到,获得积分10
16秒前
lssah完成签到 ,获得积分10
17秒前
Cai完成签到,获得积分10
19秒前
独行者完成签到,获得积分10
19秒前
marc107完成签到,获得积分10
20秒前
不如看海完成签到 ,获得积分10
21秒前
六氟合铂酸氙完成签到 ,获得积分10
21秒前
鱼贝贝发布了新的文献求助10
22秒前
李谨儒完成签到,获得积分10
22秒前
22秒前
whyme完成签到,获得积分10
22秒前
23秒前
健脊护柱完成签到 ,获得积分10
23秒前
CodeCraft应助ATOM采纳,获得10
24秒前
量子星尘发布了新的文献求助30
24秒前
贪玩的幻姬完成签到 ,获得积分10
26秒前
赘婿应助人文采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079796
求助须知:如何正确求助?哪些是违规求助? 4297897
关于积分的说明 13389149
捐赠科研通 4121238
什么是DOI,文献DOI怎么找? 2257068
邀请新用户注册赠送积分活动 1261339
关于科研通互助平台的介绍 1195451