Analysis of exhaled breath fingerprints and volatile organic compounds in COPD

电子鼻 慢性阻塞性肺病 气体分析呼吸 呼出的空气 肺病 呼气 医学 气相色谱-质谱法 内科学 色谱法 质谱法 化学 材料科学 麻醉 毒理 生物 纳米技术
作者
Mario Cazzola,Andrea Segreti,Rosamaria Capuano,Alberto Bergamini,Eugenio Martinelli,Luigino Calzetta,Paola Rogliani,Chiara Ciaprini,Josuel Ora,Roberto Paolesse,Corrado Di Natale,Arnaldo D’Amico
出处
期刊:COPD research and practice [Springer Nature]
卷期号:1 (1) 被引量:44
标识
DOI:10.1186/s40749-015-0010-1
摘要

Exhaled air contains many volatile organic compounds (VOCs) produced during human metabolic processes, in both healthy and pathological conditions. Analysis of breath allows studying the modifications of the profile of the exhaled VOCs due to different disease states, including chronic obstructive pulmonary disease (COPD). The early diagnosis of COPD is complicated and the identification of specific metabolic profiles of exhaled air may provide useful indication to better identify the disease. The aim of our study was to characterize the specific exhaled VOCs by means of the electronic nose and by solid phase micro-extraction associated to gas chromatography–mass spectrometry (SPME GC-MS). Exhaled air was collected and measured in 34 subjects, 7 healthy and 27 former smokers affected by COPD (GOLD 1–4). The signals of the electronic nose sensors were higher in COPD patients with respect to controls, and allowed to accurately classify the studied subjects in healthy or COPD. GC-MS analysis identified 37 VOCs, nine of which were significantly correlated with COPD. In particular the concentration of two of these were positively correlated whereas seven were negatively correlated with COPD. The partial least squares discriminant analysis (PLS-DA) carried out with these nine VOCs produced a significant predictive model of disease. This study shows that COPD patients exhibit qualitative and quantitative differences in the chemical compositions of exhale. These differences are detectable both by the GC-MS and the six-sensor e-nose. The use of electronic nose may represent a suitable, non-invasive diagnostic tool for characterization of COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的完成签到,获得积分10
1秒前
香蕉觅云应助KeYang采纳,获得10
1秒前
激昂的尔芙完成签到 ,获得积分10
2秒前
科目三应助杨金城采纳,获得10
2秒前
3秒前
dwt完成签到,获得积分10
3秒前
4秒前
4秒前
loveananya发布了新的文献求助30
4秒前
9977发布了新的文献求助10
5秒前
微笑枫完成签到,获得积分10
5秒前
7秒前
嘚嘚发布了新的文献求助10
7秒前
bb关注了科研通微信公众号
7秒前
7秒前
8秒前
8秒前
9秒前
yy发布了新的文献求助10
10秒前
遥远的尧应助yibo采纳,获得10
10秒前
11秒前
昀昀发布了新的文献求助10
12秒前
sanxing发布了新的文献求助10
12秒前
13秒前
loveananya完成签到,获得积分10
13秒前
had完成签到,获得积分10
13秒前
13秒前
JamesPei应助甜甜苡采纳,获得10
14秒前
Akim应助炙热冰夏采纳,获得10
14秒前
好困应助tanwenbin采纳,获得10
15秒前
han发布了新的文献求助30
16秒前
Nia发布了新的文献求助10
16秒前
领导范儿应助西瓜啵啵采纳,获得30
16秒前
17秒前
17秒前
所所应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943