Analysis of exhaled breath fingerprints and volatile organic compounds in COPD

电子鼻 慢性阻塞性肺病 气体分析呼吸 呼出的空气 肺病 呼气 医学 气相色谱-质谱法 内科学 色谱法 质谱法 化学 材料科学 麻醉 毒理 生物 纳米技术
作者
Mario Cazzola,Andrea Segreti,Rosamaria Capuano,Alberto Bergamini,Eugenio Martinelli,Luigino Calzetta,Paola Rogliani,Chiara Ciaprini,Josuel Ora,Roberto Paolesse,Corrado Di Natale,Arnaldo D’Amico
出处
期刊:COPD research and practice [Springer Nature]
卷期号:1 (1) 被引量:44
标识
DOI:10.1186/s40749-015-0010-1
摘要

Exhaled air contains many volatile organic compounds (VOCs) produced during human metabolic processes, in both healthy and pathological conditions. Analysis of breath allows studying the modifications of the profile of the exhaled VOCs due to different disease states, including chronic obstructive pulmonary disease (COPD). The early diagnosis of COPD is complicated and the identification of specific metabolic profiles of exhaled air may provide useful indication to better identify the disease. The aim of our study was to characterize the specific exhaled VOCs by means of the electronic nose and by solid phase micro-extraction associated to gas chromatography–mass spectrometry (SPME GC-MS). Exhaled air was collected and measured in 34 subjects, 7 healthy and 27 former smokers affected by COPD (GOLD 1–4). The signals of the electronic nose sensors were higher in COPD patients with respect to controls, and allowed to accurately classify the studied subjects in healthy or COPD. GC-MS analysis identified 37 VOCs, nine of which were significantly correlated with COPD. In particular the concentration of two of these were positively correlated whereas seven were negatively correlated with COPD. The partial least squares discriminant analysis (PLS-DA) carried out with these nine VOCs produced a significant predictive model of disease. This study shows that COPD patients exhibit qualitative and quantitative differences in the chemical compositions of exhale. These differences are detectable both by the GC-MS and the six-sensor e-nose. The use of electronic nose may represent a suitable, non-invasive diagnostic tool for characterization of COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助chaoschen采纳,获得50
1秒前
星辰大海应助忧心的清炎采纳,获得10
1秒前
慕青应助一个可爱玉采纳,获得10
2秒前
4秒前
充电宝应助Luke采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
8秒前
dala发布了新的文献求助30
9秒前
Go完成签到,获得积分10
10秒前
爆米花应助无心的土豆采纳,获得10
11秒前
11秒前
咖褐完成签到 ,获得积分10
12秒前
zwj完成签到,获得积分20
12秒前
kk发布了新的文献求助10
12秒前
12秒前
在水一方应助繁荣的牛排采纳,获得10
12秒前
fsdghert发布了新的文献求助10
15秒前
17秒前
包容的雁枫完成签到,获得积分10
17秒前
23秒前
24秒前
slin_sjtu完成签到,获得积分10
25秒前
mnc发布了新的文献求助10
27秒前
27秒前
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
Orange应助kk采纳,获得10
31秒前
万安安发布了新的文献求助10
32秒前
33秒前
33秒前
活泼听露发布了新的文献求助10
33秒前
35秒前
35秒前
yanlulu完成签到 ,获得积分10
36秒前
37秒前
MA发布了新的文献求助10
37秒前
今天记得来完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740