Analysis of exhaled breath fingerprints and volatile organic compounds in COPD

电子鼻 慢性阻塞性肺病 气体分析呼吸 呼出的空气 肺病 呼气 医学 气相色谱-质谱法 内科学 色谱法 质谱法 化学 材料科学 麻醉 毒理 生物 纳米技术
作者
Mario Cazzola,Andrea Segreti,Rosamaria Capuano,Alberto Bergamini,Eugenio Martinelli,Luigino Calzetta,Paola Rogliani,Chiara Ciaprini,Josuel Ora,Roberto Paolesse,Corrado Di Natale,Arnaldo D’Amico
出处
期刊:COPD research and practice [Springer Nature]
卷期号:1 (1) 被引量:44
标识
DOI:10.1186/s40749-015-0010-1
摘要

Exhaled air contains many volatile organic compounds (VOCs) produced during human metabolic processes, in both healthy and pathological conditions. Analysis of breath allows studying the modifications of the profile of the exhaled VOCs due to different disease states, including chronic obstructive pulmonary disease (COPD). The early diagnosis of COPD is complicated and the identification of specific metabolic profiles of exhaled air may provide useful indication to better identify the disease. The aim of our study was to characterize the specific exhaled VOCs by means of the electronic nose and by solid phase micro-extraction associated to gas chromatography–mass spectrometry (SPME GC-MS). Exhaled air was collected and measured in 34 subjects, 7 healthy and 27 former smokers affected by COPD (GOLD 1–4). The signals of the electronic nose sensors were higher in COPD patients with respect to controls, and allowed to accurately classify the studied subjects in healthy or COPD. GC-MS analysis identified 37 VOCs, nine of which were significantly correlated with COPD. In particular the concentration of two of these were positively correlated whereas seven were negatively correlated with COPD. The partial least squares discriminant analysis (PLS-DA) carried out with these nine VOCs produced a significant predictive model of disease. This study shows that COPD patients exhibit qualitative and quantitative differences in the chemical compositions of exhale. These differences are detectable both by the GC-MS and the six-sensor e-nose. The use of electronic nose may represent a suitable, non-invasive diagnostic tool for characterization of COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助蕪菑采纳,获得10
1秒前
wmm完成签到,获得积分10
1秒前
1秒前
Cheng发布了新的文献求助10
2秒前
lan发布了新的文献求助10
2秒前
77完成签到,获得积分10
2秒前
LaTeXer重新开启了Crt文献应助
2秒前
淡然的静珊完成签到,获得积分10
2秒前
香蕉觅云应助Breathe采纳,获得10
3秒前
3秒前
3秒前
徐昊雯发布了新的文献求助10
3秒前
科研通AI5应助汤柏钧采纳,获得10
3秒前
玖玖救捌壹完成签到 ,获得积分20
3秒前
3秒前
4秒前
ping发布了新的文献求助10
4秒前
yang发布了新的文献求助10
4秒前
5秒前
虚心的夏青完成签到,获得积分10
5秒前
爱狗先森完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助Cora采纳,获得10
5秒前
大个应助haha采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
fox199753206完成签到,获得积分10
6秒前
6秒前
小王很哇塞完成签到 ,获得积分20
6秒前
Owen应助lzz采纳,获得10
6秒前
小二郎应助chifan采纳,获得10
7秒前
子车茗应助xiaosongmufaeins采纳,获得20
8秒前
所所应助Satan采纳,获得10
8秒前
科研通AI5应助生动的翠容采纳,获得10
8秒前
神猪完成签到,获得积分10
8秒前
zuhayr发布了新的文献求助10
8秒前
123131发布了新的文献求助10
9秒前
9秒前
9秒前
糕冷草莓发布了新的文献求助10
9秒前
WJW发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437