C9orf72
斑马鱼
肌萎缩侧索硬化
单倍率不足
生物
损失函数
额颞叶变性
吗啉
神经科学
TARDBP公司
三核苷酸重复扩增
表型
遗传学
失智症
基因
病理
医学
SOD1
疾病
痴呆
等位基因
作者
Sorana Ciura,Serena Lattante,Isabelle Le Ber,Morwena Latouche,Hervé Tostivint,Alexis Brice,Edor Kabashi
摘要
To define the role that repeat expansions of a GGGGCC hexanucleotide sequence of the C9orf72 gene play in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A genetic model for ALS was developed to determine whether loss of function of the zebrafish orthologue of C9orf72 (zC9orf72) leads to abnormalities in neuronal development.C9orf72 mRNA levels were quantified in brain and lymphoblasts derived from FTLD and ALS/FTLD patients and in zebrafish. Knockdown of the zC9orf72 was performed using 2 specific antisense morpholino oligonucleotides to block transcription. Quantifications of spontaneous swimming and tactile escape response, as well as measurements of axonal projections from the spinal cord, were performed.Significantly decreased expression of C9orf72 transcripts in brain and lymphoblasts was found in sporadic FTLD and ALS/FTLD patients with normal-size or expanded hexanucleotide repeats. The zC9orf72 is selectively expressed in the developing nervous system at developmental stages. Loss of function of the zC9orf72 transcripts causes both behavioral and cellular deficits related to locomotion without major morphological abnormalities. These deficits were rescued upon overexpression of human C9orf72 mRNA transcripts.Our results indicate C9orf72 haploinsufficiency could be a contributing factor in the spectrum of ALS/FTLD neurodegenerative disorders. Loss of function of the zebrafish orthologue of zC9orf72 expression in zebrafish is associated with axonal degeneration of motor neurons that can be rescued by expressing human C9orf72 mRNA, highlighting the specificity of the induced phenotype. These results reveal a pathogenic consequence of decreased C9orf72 levels, supporting a loss of function mechanism of disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI