狼疮性肾炎
系统性红斑狼疮
炎症
肾
肾炎
医学
免疫学
巨噬细胞
表型
病理
生物
内科学
疾病
生物化学
基因
体外
作者
Yasunori Iwata,Elisabeth A. Boström,Julia Menke,Whitney Rabacal,Laurence Morel,Takashi Wada,Vicki Rubin Kelley
出处
期刊:Journal of Immunology
[The American Association of Immunologists]
日期:2012-05-01
卷期号:188 (9): 4568-4580
被引量:90
标识
DOI:10.4049/jimmunol.1102154
摘要
CSF-1, required for macrophage (Mø) survival, proliferation, and activation, is upregulated in the tubular epithelial cells (TECs) during kidney inflammation. CSF-1 mediates Mø-dependent destruction in lupus-susceptible mice with nephritis and, paradoxically, Mø-dependent renal repair in lupus-resistant mice after transient ischemia/reperfusion injury (I/R). We now report that I/R leads to defective renal repair, nonresolving inflammation, and, in turn, early-onset lupus nephritis in preclinical MRL/MpJ-Faslpr/Fas(lpr) mice (MRL-Fas(lpr) mice). Moreover, defective renal repair is not unique to MRL-Fas(lpr) mice, as flawed healing is a feature of other lupus-susceptible mice (Sle 123) and MRL mice without the Fas(lpr) mutation. Increasing CSF-1 hastens renal healing after I/R in lupus-resistant mice but hinders healing, exacerbates nonresolving inflammation, and triggers more severe early-onset lupus nephritis in MRL-Fas(lpr) mice. Probing further, the time-related balance of M1 "destroyer" Mø shifts toward the M2 "healer" phenotype in lupus-resistant mice after I/R, but M1 Mø continue to dominate in MRL-Fas(lpr) mice. Moreover, hypoxic TECs release mediators, including CSF-1, that are responsible for stimulating the expansion of M1 Mø inherently poised to destroy the kidney in MRL-Fas(lpr) mice. In conclusion, I/R induces CSF-1 in injured TECs that expands aberrant Mø (M1 phenotype), mediating defective renal repair and nonresolving inflammation, and thereby hastens the onset of lupus nephritis.
科研通智能强力驱动
Strongly Powered by AbleSci AI