已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A 'Selection Model' of Political Representation

问责 制裁 事前 校长(计算机安全) 声誉 政治 选择(遗传算法) 透明度(行为) 政治学 委托代理问题 可验证秘密共享 法律与经济学 经济 公司治理 计算机科学 法学 计算机安全 人工智能 财务 集合(抽象数据类型) 宏观经济学 程序设计语言
作者
Jane Mansbridge
摘要

Citizen demands for more accountability and transparency are implicitly grounded in a model of political representation based primarily on sanctions, in which the interests of the representative (in economic terms, the agent) are presumed to conflict with those of the constituent (in economic terms, the principal). A selection model of political representation, as with a selection model of principal-agent relations more generally, is possible when the principal and agent have similar objectives and the agent is already internally motivated to pursue those objectives. If a potential representative's intrinsic goals (overall direction and specific policies) are those the constituent desires and if the representative also has a verifiable reputation of being both competent and honest, a constituent can select that representative for office and subsequently spend relatively little effort on monitoring and sanctioning. The higher the probability that the objectives of principal and agent may be aligned, the more efficient it is for the principal to invest resources ex ante, in selecting the required type, rather than ex post, in monitoring and sanctioning. A selection model is efficient when agents face unpredictable future decisions, are hard to monitor, and must act flexibly. Accountability through monitoring and sanctioning is appropriate to the sanctions model, narrative accountability and deliberative accountability to the selection model. Normatively, the selection model tends to focus the attention of both citizens and representatives on the common interest. In political science the selection model was advanced in the early 1960s as one of the two paths to constituency control, but after the 1970s was eclipsed by the sanctions model in spite of data seeming to indicate that in many circumstances it has greater predictive power. Economists have only recently begun to apply the selection model significantly to politics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助太叔灭龙采纳,获得10
刚刚
学术蝗虫发布了新的文献求助10
刚刚
3秒前
djbj2022发布了新的文献求助20
4秒前
Viviane完成签到,获得积分10
4秒前
ly完成签到 ,获得积分10
5秒前
KK完成签到,获得积分20
5秒前
王白山发布了新的文献求助10
7秒前
7秒前
Fox完成签到 ,获得积分10
7秒前
8秒前
goodluck发布了新的文献求助10
8秒前
Aurora完成签到,获得积分10
9秒前
11秒前
从容芮应助guanshujuan采纳,获得10
12秒前
dm发布了新的文献求助10
12秒前
桃掉烦恼完成签到,获得积分10
12秒前
Ziyi_Xu发布了新的文献求助10
13秒前
13秒前
王白山完成签到,获得积分10
13秒前
小小酥完成签到,获得积分10
14秒前
15秒前
懦弱的寄琴完成签到 ,获得积分10
15秒前
wu发布了新的文献求助10
15秒前
iyiyii完成签到 ,获得积分10
16秒前
香山完成签到,获得积分20
17秒前
min发布了新的文献求助10
17秒前
空曲发布了新的文献求助10
18秒前
善学以致用应助孔半仙采纳,获得10
19秒前
goodluck完成签到,获得积分10
19秒前
懦弱的寄琴关注了科研通微信公众号
20秒前
Akim应助义气的凡灵采纳,获得10
20秒前
Zhangqiang发布了新的文献求助10
21秒前
科目三应助喝牛奶de猪采纳,获得10
21秒前
21秒前
22秒前
22秒前
24秒前
lvben完成签到,获得积分10
25秒前
HonamC发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146392
求助须知:如何正确求助?哪些是违规求助? 2797790
关于积分的说明 7825573
捐赠科研通 2454122
什么是DOI,文献DOI怎么找? 1306129
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503