Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds

高光谱成像 发芽 偏最小二乘回归 校准 多元统计 线性判别分析 近红外光谱 数学 园艺 统计 人工智能 生物 计算机科学 神经科学
作者
Lalit Mohan Kandpal,Santosh Lohumi,Moon S. Kim,Jum‐Soon Kang,Byoung‐Kwan Cho
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:229: 534-544 被引量:114
标识
DOI:10.1016/j.snb.2016.02.015
摘要

A near-infrared (NIR) hyperspectral imaging (HSI) system was used to predict viability and vigor (in term of germination periods) in muskmelon seeds. Hyperspectral images of muskmelon seeds were acquired using a NIR push-broom HSI system covering the spectral range of 948–2494 nm. After NIR spectra collection, all seeds underwent a germination test to confirm their viability and vigor. The spectra from seeds with 3 and 5 germination days and nongerminated seeds were further used for development of a classification model of partial least-squares discriminant analysis (PLSDA). Most effective wavelengths were selected using three model-based variable selection methods, i.e., variable important in projection (VIP), selectivity ratio (SR), and significance multivariate correlation (sMC), which selected 23, 18, and 19 optimal variables, respectively, from full set of 208 variables. The selected variables from different waveband selection methods were found genuine and significant for interpreting the prediction results of seed viability and vigor. Subsequently, the PLS-DA model was constructed using individual VIP-, SR-, or sMC-selected variables. The results demonstrated that the PLSDA model developed with the selected optimal variables from the different methods provided comparable results for the calibration set; however, the PLSDA-SR method afforded the highest classification accuracy (94.6%) for a validation set used to determine the viability and vigor of muskmelon seeds. The wavelengths selected by the different methods represents chemical components of the seed and the attribute of germination ability was chosen most often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
汉堡包应助星点点采纳,获得10
1秒前
不安之桃发布了新的文献求助10
2秒前
科研通AI2S应助Lignin采纳,获得10
3秒前
难过的谷芹应助Lignin采纳,获得10
3秒前
隐形曼青应助Lignin采纳,获得10
3秒前
Owen应助Lignin采纳,获得10
3秒前
善学以致用应助Lignin采纳,获得10
3秒前
3秒前
充电宝应助Lignin采纳,获得10
3秒前
3秒前
浮云发布了新的文献求助10
3秒前
Everglow发布了新的文献求助10
4秒前
甜甜发布了新的文献求助10
4秒前
鹿过发布了新的文献求助10
4秒前
阳光友蕊发布了新的文献求助10
7秒前
8秒前
David完成签到 ,获得积分10
9秒前
11秒前
11秒前
HTniconico完成签到 ,获得积分10
11秒前
科研通AI6.1应助欢喜海采纳,获得10
11秒前
11秒前
顺心的觅荷完成签到 ,获得积分10
12秒前
rburbidn发布了新的文献求助10
13秒前
乐乐应助瑰慈采纳,获得10
14秒前
量子星尘发布了新的文献求助30
14秒前
研友_VZG7GZ应助like采纳,获得10
15秒前
科研韭菜发布了新的文献求助10
17秒前
18秒前
Suki发布了新的文献求助10
18秒前
18秒前
mirror应助xiang采纳,获得10
18秒前
深年完成签到,获得积分10
19秒前
慕青应助浮云采纳,获得10
21秒前
Everglow完成签到,获得积分10
21秒前
21秒前
6666应助djbj2022采纳,获得10
22秒前
山下梅子酒完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811