Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds

高光谱成像 发芽 偏最小二乘回归 校准 多元统计 线性判别分析 近红外光谱 数学 园艺 统计 人工智能 生物 计算机科学 神经科学
作者
Lalit Mohan Kandpal,Santosh Lohumi,Moon S. Kim,Jum‐Soon Kang,Byoung‐Kwan Cho
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:229: 534-544 被引量:114
标识
DOI:10.1016/j.snb.2016.02.015
摘要

A near-infrared (NIR) hyperspectral imaging (HSI) system was used to predict viability and vigor (in term of germination periods) in muskmelon seeds. Hyperspectral images of muskmelon seeds were acquired using a NIR push-broom HSI system covering the spectral range of 948–2494 nm. After NIR spectra collection, all seeds underwent a germination test to confirm their viability and vigor. The spectra from seeds with 3 and 5 germination days and nongerminated seeds were further used for development of a classification model of partial least-squares discriminant analysis (PLSDA). Most effective wavelengths were selected using three model-based variable selection methods, i.e., variable important in projection (VIP), selectivity ratio (SR), and significance multivariate correlation (sMC), which selected 23, 18, and 19 optimal variables, respectively, from full set of 208 variables. The selected variables from different waveband selection methods were found genuine and significant for interpreting the prediction results of seed viability and vigor. Subsequently, the PLS-DA model was constructed using individual VIP-, SR-, or sMC-selected variables. The results demonstrated that the PLSDA model developed with the selected optimal variables from the different methods provided comparable results for the calibration set; however, the PLSDA-SR method afforded the highest classification accuracy (94.6%) for a validation set used to determine the viability and vigor of muskmelon seeds. The wavelengths selected by the different methods represents chemical components of the seed and the attribute of germination ability was chosen most often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
wwsss完成签到,获得积分10
3秒前
Polylactic完成签到 ,获得积分10
4秒前
星空发布了新的文献求助10
5秒前
哈哈哈完成签到,获得积分10
6秒前
澄钰羽完成签到,获得积分10
7秒前
加减乘除发布了新的文献求助10
7秒前
肥鹏完成签到,获得积分10
8秒前
能干世倌完成签到,获得积分10
9秒前
杨玉轩完成签到,获得积分10
9秒前
彪壮的绮烟完成签到,获得积分10
9秒前
饭煲完成签到,获得积分10
9秒前
李健应助TT采纳,获得10
9秒前
月yue完成签到,获得积分10
10秒前
温暖的钻石完成签到,获得积分10
10秒前
亚铁氰化钾完成签到,获得积分10
11秒前
Jiangaook完成签到,获得积分10
11秒前
夏天完成签到,获得积分10
13秒前
深情安青应助饭煲采纳,获得10
13秒前
狠毒的小龙虾完成签到,获得积分10
14秒前
博士完成签到 ,获得积分10
14秒前
小丸子完成签到,获得积分10
15秒前
一小会完成签到,获得积分10
15秒前
pw完成签到 ,获得积分10
16秒前
make217完成签到 ,获得积分10
17秒前
热心的冬菱完成签到 ,获得积分10
18秒前
活泼溪流完成签到,获得积分10
18秒前
花生完成签到 ,获得积分10
18秒前
ftc完成签到,获得积分10
18秒前
18秒前
乘凉完成签到,获得积分10
19秒前
19秒前
小刘爱科研完成签到,获得积分10
19秒前
甜美的松鼠完成签到 ,获得积分10
20秒前
Denning完成签到,获得积分10
20秒前
xiaolianwheat完成签到,获得积分10
20秒前
KING完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131