Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds

高光谱成像 发芽 偏最小二乘回归 校准 多元统计 线性判别分析 近红外光谱 数学 园艺 统计 人工智能 生物 计算机科学 神经科学
作者
Lalit Mohan Kandpal,Santosh Lohumi,Moon S. Kim,Jum‐Soon Kang,Byoung‐Kwan Cho
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:229: 534-544 被引量:114
标识
DOI:10.1016/j.snb.2016.02.015
摘要

A near-infrared (NIR) hyperspectral imaging (HSI) system was used to predict viability and vigor (in term of germination periods) in muskmelon seeds. Hyperspectral images of muskmelon seeds were acquired using a NIR push-broom HSI system covering the spectral range of 948–2494 nm. After NIR spectra collection, all seeds underwent a germination test to confirm their viability and vigor. The spectra from seeds with 3 and 5 germination days and nongerminated seeds were further used for development of a classification model of partial least-squares discriminant analysis (PLSDA). Most effective wavelengths were selected using three model-based variable selection methods, i.e., variable important in projection (VIP), selectivity ratio (SR), and significance multivariate correlation (sMC), which selected 23, 18, and 19 optimal variables, respectively, from full set of 208 variables. The selected variables from different waveband selection methods were found genuine and significant for interpreting the prediction results of seed viability and vigor. Subsequently, the PLS-DA model was constructed using individual VIP-, SR-, or sMC-selected variables. The results demonstrated that the PLSDA model developed with the selected optimal variables from the different methods provided comparable results for the calibration set; however, the PLSDA-SR method afforded the highest classification accuracy (94.6%) for a validation set used to determine the viability and vigor of muskmelon seeds. The wavelengths selected by the different methods represents chemical components of the seed and the attribute of germination ability was chosen most often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何小芳完成签到,获得积分10
刚刚
HHH发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
今后应助微笑无敌瑶采纳,获得10
2秒前
2秒前
酷钱完成签到 ,获得积分10
2秒前
FashionBoy应助zyyy采纳,获得10
2秒前
昼夜本色发布了新的文献求助10
2秒前
李健的小迷弟应助药小博采纳,获得10
2秒前
彭于晏应助清晨杨采纳,获得10
2秒前
3秒前
3秒前
丘比特应助轻松囧采纳,获得10
3秒前
火速上前线完成签到,获得积分10
3秒前
seed85发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
龟龟发布了新的文献求助10
5秒前
even应助文件撤销了驳回
6秒前
osneiogn完成签到,获得积分10
6秒前
6秒前
爱吃饼干的土拨鼠完成签到,获得积分10
6秒前
6秒前
VC发布了新的文献求助10
7秒前
香蕉觅云应助温暖的鸿采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
甜美静白完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助Savannah采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
bling完成签到,获得积分20
9秒前
迷人书蝶发布了新的文献求助10
9秒前
xdd发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807