Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds

高光谱成像 发芽 偏最小二乘回归 校准 多元统计 线性判别分析 近红外光谱 数学 园艺 统计 人工智能 生物 计算机科学 神经科学
作者
Lalit Mohan Kandpal,Santosh Lohumi,Moon S. Kim,Jum‐Soon Kang,Byoung‐Kwan Cho
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:229: 534-544 被引量:114
标识
DOI:10.1016/j.snb.2016.02.015
摘要

A near-infrared (NIR) hyperspectral imaging (HSI) system was used to predict viability and vigor (in term of germination periods) in muskmelon seeds. Hyperspectral images of muskmelon seeds were acquired using a NIR push-broom HSI system covering the spectral range of 948–2494 nm. After NIR spectra collection, all seeds underwent a germination test to confirm their viability and vigor. The spectra from seeds with 3 and 5 germination days and nongerminated seeds were further used for development of a classification model of partial least-squares discriminant analysis (PLSDA). Most effective wavelengths were selected using three model-based variable selection methods, i.e., variable important in projection (VIP), selectivity ratio (SR), and significance multivariate correlation (sMC), which selected 23, 18, and 19 optimal variables, respectively, from full set of 208 variables. The selected variables from different waveband selection methods were found genuine and significant for interpreting the prediction results of seed viability and vigor. Subsequently, the PLS-DA model was constructed using individual VIP-, SR-, or sMC-selected variables. The results demonstrated that the PLSDA model developed with the selected optimal variables from the different methods provided comparable results for the calibration set; however, the PLSDA-SR method afforded the highest classification accuracy (94.6%) for a validation set used to determine the viability and vigor of muskmelon seeds. The wavelengths selected by the different methods represents chemical components of the seed and the attribute of germination ability was chosen most often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助LXL采纳,获得10
刚刚
1秒前
2秒前
3秒前
深情安青应助cccc采纳,获得10
3秒前
3秒前
细心擎呢发布了新的文献求助10
4秒前
5秒前
小彭仔完成签到,获得积分10
5秒前
罗咩咩发布了新的文献求助10
7秒前
丘比特应助ninomi采纳,获得10
7秒前
7秒前
蓝天应助聪慧的醉波采纳,获得10
7秒前
8秒前
彭于晏应助霸气的柠檬采纳,获得10
9秒前
大模型应助吴龙采纳,获得10
9秒前
茶米发布了新的文献求助10
10秒前
10秒前
单薄的西装完成签到,获得积分10
11秒前
NexusExplorer应助Wjp采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
shadow完成签到,获得积分10
12秒前
balalal发布了新的文献求助10
12秒前
CodeCraft应助sghsh采纳,获得10
13秒前
CodeCraft应助zd200572采纳,获得10
13秒前
Hello应助Dylan采纳,获得10
13秒前
珊明治完成签到,获得积分10
14秒前
15秒前
ak24765完成签到,获得积分10
15秒前
Lucas应助帝释天I采纳,获得10
16秒前
Linden发布了新的文献求助10
16秒前
17秒前
传奇3应助ling22采纳,获得10
17秒前
风衣拖地完成签到 ,获得积分10
17秒前
冰红粥完成签到,获得积分10
17秒前
17秒前
852应助曾经山柏采纳,获得10
18秒前
可爱的函函应助杜晓倩采纳,获得10
18秒前
所所应助黎其采纳,获得10
18秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133