Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds

高光谱成像 发芽 偏最小二乘回归 校准 多元统计 线性判别分析 近红外光谱 数学 园艺 统计 人工智能 生物 计算机科学 神经科学
作者
Lalit Mohan Kandpal,Santosh Lohumi,Moon S. Kim,Jum‐Soon Kang,Byoung‐Kwan Cho
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:229: 534-544 被引量:114
标识
DOI:10.1016/j.snb.2016.02.015
摘要

A near-infrared (NIR) hyperspectral imaging (HSI) system was used to predict viability and vigor (in term of germination periods) in muskmelon seeds. Hyperspectral images of muskmelon seeds were acquired using a NIR push-broom HSI system covering the spectral range of 948–2494 nm. After NIR spectra collection, all seeds underwent a germination test to confirm their viability and vigor. The spectra from seeds with 3 and 5 germination days and nongerminated seeds were further used for development of a classification model of partial least-squares discriminant analysis (PLSDA). Most effective wavelengths were selected using three model-based variable selection methods, i.e., variable important in projection (VIP), selectivity ratio (SR), and significance multivariate correlation (sMC), which selected 23, 18, and 19 optimal variables, respectively, from full set of 208 variables. The selected variables from different waveband selection methods were found genuine and significant for interpreting the prediction results of seed viability and vigor. Subsequently, the PLS-DA model was constructed using individual VIP-, SR-, or sMC-selected variables. The results demonstrated that the PLSDA model developed with the selected optimal variables from the different methods provided comparable results for the calibration set; however, the PLSDA-SR method afforded the highest classification accuracy (94.6%) for a validation set used to determine the viability and vigor of muskmelon seeds. The wavelengths selected by the different methods represents chemical components of the seed and the attribute of germination ability was chosen most often.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助liyi采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
充电宝应助讨厌所有人采纳,获得10
3秒前
3秒前
3秒前
3秒前
34101127发布了新的文献求助30
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
丘比特应助能干的盼海采纳,获得20
5秒前
热心易绿完成签到 ,获得积分10
5秒前
梁帅琦完成签到,获得积分20
6秒前
7秒前
丸子发布了新的文献求助10
7秒前
8秒前
sjc完成签到 ,获得积分10
9秒前
梁帅琦发布了新的文献求助10
9秒前
9秒前
Denmark发布了新的文献求助10
9秒前
研友_VZG7GZ应助nature2号采纳,获得10
9秒前
vv完成签到,获得积分10
10秒前
爱学习的小趴菜完成签到,获得积分10
10秒前
10秒前
11秒前
shan发布了新的文献求助10
12秒前
13秒前
研友_VZG7GZ应助HanGuilin采纳,获得10
14秒前
15秒前
科研助理发布了新的文献求助10
15秒前
lee完成签到,获得积分10
16秒前
科研通AI6.1应助闾丘剑封采纳,获得10
16秒前
16秒前
17秒前
华仔应助个性的长颈鹿采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676