蒙特卡罗方法
非参数统计
置信区间
结构方程建模
数学
背景(考古学)
统计物理中的蒙特卡罗方法
蒙特卡罗分子模拟
统计
计量经济学
混合蒙特卡罗
统计物理学
马尔科夫蒙特卡洛
物理
古生物学
生物
作者
Davood Tofighi,David P. MacKinnon
标识
DOI:10.1080/10705511.2015.1057284
摘要
One challenge in mediation analysis is to generate a confidence interval (CI) with high coverage and power that maintains a nominal significance level for any well-defined function of indirect and direct effects in the general context of structural equation modeling (SEM). This study discusses a proposed Monte Carlo extension that finds the CIs for any well-defined function of the coefficients of SEM such as the product of k coefficients and the ratio of the contrasts of indirect effects, using the Monte Carlo method. Finally, we conduct a small-scale simulation study to compare CIs produced by the Monte Carlo, nonparametric bootstrap, and asymptotic-delta methods. Based on our simulation study, we recommend researchers use the Monte Carlo method to test a complex function of indirect effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI