Robust learning of tensegrity robot control for locomotion through form-finding

张拉整体 机器人 稳健性(进化) 多边形(计算机图形学) 计算机科学 机器人运动 鲁棒控制 人工智能 控制工程 模拟 机器人控制 移动机器人 工程类 控制系统 结构工程 帧(网络) 电气工程 基因 电信 化学 生物化学
作者
Kyunam Kim,Adrian Agogino,Aliakbar Toghyan,Deaho Moon,Laqshya Taneja,Alice M. Agogino
标识
DOI:10.1109/iros.2015.7354204
摘要

Robots based on tensegrity structures have the potential to be robust, efficient and adaptable. While traditionally being difficult to control, recent control strategies for ball-shaped tensegrity robots have successfully enabled punctuated rolling, hill-climbing and obstacle climbing. These gains have been made possible through the use of machine learning and physics simulations that allow controls to be "learned" instead of being engineered in a top-down fashion. While effective in simulation, these emergent methods unfortunately give little insight into how to generalize the learned control strategies and evaluate their robustness. These robustness issues are especially important when applied to physical robots as there exists errors with respect to the simulation, which may prevent the physical robot from actually rolling. This paper describes how the robustness can be addressed in three ways: 1) We present a dynamic relaxation technique that describes the shape of a tensegrity structure given the forces on its cables; 2) We then show how control of a tensegrity robot "ball" for locomotion can be decomposed into finding its shape and then determining the position of the center of mass relative to the supporting polygon for this new shape; 3) Using a multi-step Monte Carlo based learning algorithm, we determine the structural geometry that pushes the center of mass out of the supporting polygon to provide the most robust basic mobility step that can lead to rolling. Combined, these elements will give greater insight into the control process, provide an alternative to the existing physics simulations and offer a greater degree of robustness to bridge the gap between simulation and hardware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangjue完成签到,获得积分10
1秒前
yyy完成签到,获得积分10
1秒前
甜甜友容完成签到,获得积分10
2秒前
dajiejie完成签到 ,获得积分10
2秒前
2秒前
中国大陆完成签到,获得积分10
2秒前
Wmhan完成签到 ,获得积分10
2秒前
沉静老四发布了新的文献求助10
5秒前
8秒前
lll关闭了lll文献求助
9秒前
Andy完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Conner完成签到 ,获得积分10
11秒前
怪杰完成签到,获得积分10
11秒前
星光下的赶路人完成签到 ,获得积分10
11秒前
12秒前
WY发布了新的文献求助10
14秒前
15秒前
迪迪迪迪迪完成签到 ,获得积分10
16秒前
Maria发布了新的文献求助30
16秒前
爱听歌蜗牛完成签到,获得积分10
17秒前
17秒前
偏偏完成签到 ,获得积分10
17秒前
NNi完成签到,获得积分10
18秒前
阳光的凌雪完成签到 ,获得积分10
19秒前
19秒前
满意白卉完成签到 ,获得积分10
20秒前
20秒前
LTB发布了新的文献求助10
21秒前
儒雅的豁完成签到,获得积分10
21秒前
22秒前
留胡子的丹彤完成签到 ,获得积分10
22秒前
24秒前
hml123完成签到,获得积分10
24秒前
Daybreak完成签到 ,获得积分10
24秒前
wdd发布了新的文献求助10
26秒前
LTB完成签到,获得积分10
26秒前
拉长的秋白完成签到 ,获得积分10
27秒前
jingling完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539257
求助须知:如何正确求助?哪些是违规求助? 4626036
关于积分的说明 14597438
捐赠科研通 4566884
什么是DOI,文献DOI怎么找? 2503668
邀请新用户注册赠送积分活动 1481567
关于科研通互助平台的介绍 1453146