Robust learning of tensegrity robot control for locomotion through form-finding

张拉整体 机器人 稳健性(进化) 多边形(计算机图形学) 计算机科学 机器人运动 鲁棒控制 人工智能 控制工程 模拟 机器人控制 移动机器人 工程类 控制系统 结构工程 帧(网络) 电气工程 基因 电信 化学 生物化学
作者
Kyunam Kim,Adrian Agogino,Aliakbar Toghyan,Deaho Moon,Laqshya Taneja,Alice M. Agogino
标识
DOI:10.1109/iros.2015.7354204
摘要

Robots based on tensegrity structures have the potential to be robust, efficient and adaptable. While traditionally being difficult to control, recent control strategies for ball-shaped tensegrity robots have successfully enabled punctuated rolling, hill-climbing and obstacle climbing. These gains have been made possible through the use of machine learning and physics simulations that allow controls to be "learned" instead of being engineered in a top-down fashion. While effective in simulation, these emergent methods unfortunately give little insight into how to generalize the learned control strategies and evaluate their robustness. These robustness issues are especially important when applied to physical robots as there exists errors with respect to the simulation, which may prevent the physical robot from actually rolling. This paper describes how the robustness can be addressed in three ways: 1) We present a dynamic relaxation technique that describes the shape of a tensegrity structure given the forces on its cables; 2) We then show how control of a tensegrity robot "ball" for locomotion can be decomposed into finding its shape and then determining the position of the center of mass relative to the supporting polygon for this new shape; 3) Using a multi-step Monte Carlo based learning algorithm, we determine the structural geometry that pushes the center of mass out of the supporting polygon to provide the most robust basic mobility step that can lead to rolling. Combined, these elements will give greater insight into the control process, provide an alternative to the existing physics simulations and offer a greater degree of robustness to bridge the gap between simulation and hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
刚刚
躞蹀发布了新的文献求助10
刚刚
1秒前
Demon应助VESong采纳,获得10
2秒前
wyn完成签到,获得积分10
2秒前
2秒前
4秒前
QQWQEQRQ发布了新的文献求助10
4秒前
浮游应助兴奋白枫采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助20
5秒前
希望天下0贩的0应助小路采纳,获得10
5秒前
YKX完成签到,获得积分10
6秒前
鲤鱼月饼发布了新的文献求助10
7秒前
8R60d8完成签到,获得积分0
7秒前
懵懂的幻桃完成签到 ,获得积分10
8秒前
lancelot发布了新的文献求助10
8秒前
softquietone发布了新的文献求助10
8秒前
8秒前
乔雨蒙发布了新的文献求助10
8秒前
10秒前
拼搏向上发布了新的文献求助30
10秒前
10秒前
科研通AI6应助RiKy采纳,获得10
11秒前
WAM发布了新的文献求助10
11秒前
11秒前
zygclwl发布了新的文献求助150
12秒前
子小雨记发布了新的文献求助10
12秒前
ichi发布了新的文献求助10
12秒前
bully1024完成签到,获得积分10
13秒前
13秒前
datou发布了新的文献求助10
13秒前
蓝蓝发布了新的文献求助10
13秒前
14秒前
强强强强完成签到,获得积分10
15秒前
15秒前
15秒前
softquietone完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322