Robust learning of tensegrity robot control for locomotion through form-finding

张拉整体 机器人 稳健性(进化) 多边形(计算机图形学) 计算机科学 机器人运动 鲁棒控制 人工智能 控制工程 模拟 机器人控制 移动机器人 工程类 控制系统 结构工程 电信 生物化学 化学 电气工程 帧(网络) 基因
作者
Kyunam Kim,Adrian Agogino,Aliakbar Toghyan,Deaho Moon,Laqshya Taneja,Alice M. Agogino
标识
DOI:10.1109/iros.2015.7354204
摘要

Robots based on tensegrity structures have the potential to be robust, efficient and adaptable. While traditionally being difficult to control, recent control strategies for ball-shaped tensegrity robots have successfully enabled punctuated rolling, hill-climbing and obstacle climbing. These gains have been made possible through the use of machine learning and physics simulations that allow controls to be "learned" instead of being engineered in a top-down fashion. While effective in simulation, these emergent methods unfortunately give little insight into how to generalize the learned control strategies and evaluate their robustness. These robustness issues are especially important when applied to physical robots as there exists errors with respect to the simulation, which may prevent the physical robot from actually rolling. This paper describes how the robustness can be addressed in three ways: 1) We present a dynamic relaxation technique that describes the shape of a tensegrity structure given the forces on its cables; 2) We then show how control of a tensegrity robot "ball" for locomotion can be decomposed into finding its shape and then determining the position of the center of mass relative to the supporting polygon for this new shape; 3) Using a multi-step Monte Carlo based learning algorithm, we determine the structural geometry that pushes the center of mass out of the supporting polygon to provide the most robust basic mobility step that can lead to rolling. Combined, these elements will give greater insight into the control process, provide an alternative to the existing physics simulations and offer a greater degree of robustness to bridge the gap between simulation and hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿媛呐完成签到,获得积分10
刚刚
创口贴贴发布了新的文献求助10
1秒前
1秒前
1秒前
安详向日葵完成签到 ,获得积分10
1秒前
无花果应助Star1983采纳,获得10
1秒前
以筱发布了新的文献求助10
2秒前
3秒前
小刘发布了新的文献求助10
3秒前
3秒前
李某某发布了新的文献求助30
3秒前
4秒前
JamesPei应助lyh采纳,获得10
4秒前
隐形曼青应助LY采纳,获得10
4秒前
罐头胖听发布了新的文献求助10
5秒前
5秒前
5秒前
lixm发布了新的文献求助10
5秒前
ENHNG完成签到,获得积分10
5秒前
chentong完成签到 ,获得积分10
6秒前
道以文完成签到,获得积分10
7秒前
爱吃脑袋瓜完成签到,获得积分10
7秒前
忧郁紫翠完成签到,获得积分10
7秒前
Zel博博完成签到,获得积分10
7秒前
雪婆发布了新的文献求助10
7秒前
8秒前
亚琳完成签到,获得积分10
9秒前
旭宝儿发布了新的文献求助10
9秒前
云&fudong完成签到,获得积分10
10秒前
余生发布了新的文献求助10
10秒前
天道酬勤完成签到,获得积分10
10秒前
研友_Y59785应助无限的依波采纳,获得10
10秒前
10秒前
暗能量完成签到,获得积分10
11秒前
Li猪猪完成签到,获得积分10
11秒前
saluo完成签到,获得积分10
11秒前
luiii完成签到,获得积分10
11秒前
wse完成签到,获得积分10
12秒前
如意雅山发布了新的文献求助10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582