材料科学
电化学
水溶液
化学工程
阴极
离子
电池(电)
表面改性
锂(药物)
磷酸钒锂电池
锂离子电池
无机化学
电极
有机化学
化学
物理
工程类
内分泌学
物理化学
功率(物理)
医学
量子力学
作者
Artur Tron,Yong Nam Jo,Si Hyoung Oh,Yeong Don Park,Junyoung Mun
标识
DOI:10.1021/acsami.6b16675
摘要
The LiFePO4 surface is coated with AlF3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO4 and the aqueous electrolyte (1 M Li2SO4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO4 by 1 wt % AlF3 has a high discharge capacity of 132 mAh g-1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO4 has a specific capacity of 123 mAh g-1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF3 coating material has good compatibility with the LiFePO4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO4 material in aqueous electrolyte solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI