材料科学
粘附
基质(水族馆)
细胞粘附
甲基丙烯酸酯
聚合物
化学工程
作文(语言)
生物物理学
复合材料
聚合
语言学
哲学
海洋学
工程类
生物
地质学
作者
Christopher R. Anderson,Filippo Gambinossi,Katarina M. DiLillo,André Laschewsky,Erik Wischerhoff,James K. Ferri,Lauren S. Sefcik
摘要
Thermoresponsive polymer (TRP) cell culture substrates are widely utilized for nonenzymatic, temperature-triggered release of adherent cells. Increasingly, multicomponent TRPs are being developed to facilitate refined control of cell adhesion and detachment, which requires an understanding of the relationships between composition-dependent substrate physicochemical properties and cellular responses. Here, we utilize a homologous series of poly(MEO2 MAx -co-OEGMAy ) brushes with variable copolymer ratio (x/y) to explore the effects of substrate hydrophobicity on L-929 fibroblast adhesion, morphology, and temperature-triggered cell detachment. Substrate hydrophobicity is reported in terms of the equilibrium spreading coefficient (S), and variations in copolymer ratio reveal differential hydrophobicity that is correlated to serum protein adsorption and initial cell attachment at 37°C. Furthermore, quantitative metrics of cell morphology show that cell spreading is enhanced on more hydrophobic surfaces with increased (x/y) ratio, which is further supported by gene expression analysis of biomarkers of cell spreading (e.g., RhoA, Dusp2). Temperature-dependent cell detachment is limited for pure poly(MEO2 MA); however, rapid cell rounding and detachment (<20 min) are evident for all poly(MEO2 MAx -co-OEGMAy ) substrates. These results suggest that increased MEO2 MA content in poly(MEO2 MAx -co-OEGMAy ) substrates elicits enhanced protein adsorption, cell adhesion, and cell spreading; however, integration of small amounts of the more hydrophilic OEGMA unit facilitates both cell attachment/spreading and detachment. This study demonstrates an important role for the composition-dependent control of surface hydrophobicity in the design of multicomponent TRPs for desired biological outcomes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2416-2428, 2017.
科研通智能强力驱动
Strongly Powered by AbleSci AI