Deep learning based ensemble approach for probabilistic wind power forecasting

风力发电 概率逻辑 风电预测 概率预测 计算机科学 小波变换 电力系统 人工神经网络 卷积神经网络 人工智能 数据挖掘 风速 功率(物理) 机器学习 小波 工程类 气象学 物理 电气工程 量子力学
作者
Huaizhi Wang,Rongquan Zhang,Guibin Wang,Jianchun Peng,Hui Jiang,Yitao Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:188: 56-70 被引量:571
标识
DOI:10.1016/j.apenergy.2016.11.111
摘要

Due to the economic and environmental benefits, wind power is becoming one of the more promising supplements for electric power generation. However, the uncertainty exhibited in wind power data is generally unacceptably large. Thus, the data should be accurately evaluated by operators to effectively mitigate the risks of wind power on power system operations. Recognizing this challenge, a novel deep learning based ensemble approach is proposed for probabilistic wind power forecasting. In this approach, an advanced point forecasting method is originally proposed based on wavelet transform and convolutional neural network. Wavelet transform is used to decompose the raw wind power data into different frequencies. The nonlinear features in each frequency that are used to improve the forecast accuracy are later effectively learned by the convolutional neural network. The uncertainties in wind power data, i.e., the model misspecification and data noise, are separately identified thereafter. Consequently, the probabilistic distribution of wind power data can be statistically formulated. The proposed ensemble approach has been extensively assessed using real wind farm data from China, and the results demonstrate that the uncertainties in wind power data can be better learned using the proposed approach and that a competitive performance is obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助w1x2123采纳,获得10
刚刚
茁长的树苗完成签到 ,获得积分10
刚刚
刚刚
可yi完成签到,获得积分10
1秒前
Yongander完成签到,获得积分10
1秒前
1秒前
小二郎应助忘尘采纳,获得10
1秒前
英俊的铭应助liuxian采纳,获得10
2秒前
Mxaxxxx发布了新的文献求助10
3秒前
4秒前
在水一方应助oleskarabach采纳,获得10
4秒前
6秒前
6秒前
cccf发布了新的文献求助10
7秒前
Zewen_Li应助研友_LJGOan采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
烤乳猪发布了新的文献求助10
9秒前
难过以晴发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
lmd250909完成签到,获得积分10
12秒前
12秒前
国家一级保护废物点心完成签到,获得积分10
13秒前
李健的粉丝团团长应助cccf采纳,获得100
14秒前
GUIGUI发布了新的文献求助10
14秒前
14秒前
忘尘发布了新的文献求助10
14秒前
Gnehsnuy完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
和谐项链发布了新的文献求助10
17秒前
紫熊发布了新的文献求助20
19秒前
土土完成签到,获得积分10
19秒前
优美芝发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
Xing发布了新的文献求助10
21秒前
oleskarabach发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408