Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks

计算机科学 动态功能连接 动态网络分析 图论 图形 功能集成 复杂网络 认知 拓扑(电路) 代表(政治) 功率图分析 功能连接 理论计算机科学 人工智能 分布式计算 神经科学 数学 心理学 计算机网络 万维网 数学分析 组合数学 政治 法学 积分方程 政治学
作者
Shen Ren,Junhua Li,Fumihiko Taya,Joshua de Souza,Nitish V. Thakor,Anastasios Bezerianos
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 547-556 被引量:42
标识
DOI:10.1109/tnsre.2016.2597961
摘要

The analysis of the topology and organization of brain networks is known to greatly benefit from network measures in graph theory. However, to evaluate dynamic changes of brain functional connectivity, more sophisticated quantitative metrics characterizing temporal evolution of brain topological features are required. To simplify conversion of time-varying brain connectivity to a static graph representation is straightforward but the procedure loses temporal information that could be critical in understanding the brain functions. To extend the understandings of functional segregation and integration to a dynamic fashion, we recommend dynamic graph metrics to characterise temporal changes of topological features of brain networks. This study investigated functional segregation and integration of brain networks over time by dynamic graph metrics derived from EEG signals during an experimental protocol: performance of complex flight simulation tasks with multiple levels of difficulty. We modelled time-varying brain functional connectivity as multi-layer networks, in which each layer models brain connectivity at time window t + Δt. Dynamic graph metrics were calculated to quantify temporal and topological properties of the network. Results show that brain networks under the performance of complex tasks reveal a dynamic small-world architecture with a number of frequently connected nodes or hubs, which supports the balance of information segregation and integration in brain over time. The results also show that greater cognitive workloads caused by more difficult tasks induced a more globally efficient but less clustered dynamic small-world functional network. Our study illustrates that task-related changes of functional brain network segregation and integration can be characterized by dynamic graph metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助虫虫采纳,获得10
1秒前
闻妙完成签到,获得积分10
1秒前
2秒前
SSS完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
foceman发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
沉默的茉莉完成签到 ,获得积分10
9秒前
LL发布了新的文献求助10
10秒前
慕青应助文艺的听白采纳,获得10
10秒前
30040发布了新的文献求助10
11秒前
能干的丸子完成签到,获得积分10
11秒前
企鹅完成签到,获得积分20
11秒前
顾矜应助泽锦臻采纳,获得20
11秒前
11秒前
飞飞发布了新的文献求助10
12秒前
大卷完成签到,获得积分10
13秒前
月亮啊发布了新的文献求助10
13秒前
biog12发布了新的文献求助20
13秒前
14秒前
大模型应助Jonas采纳,获得10
14秒前
生活于微完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
汉堡包应助wkwwkwkwk采纳,获得10
16秒前
憨憨芸发布了新的文献求助10
16秒前
17秒前
镜缘完成签到 ,获得积分20
18秒前
18秒前
共享精神应助30040采纳,获得10
18秒前
18秒前
LL完成签到,获得积分10
19秒前
Una发布了新的文献求助10
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743