Equivalent Reactor Network Model for the Modeling of Fluid Catalytic Cracking Riser Reactor

计算 计算流体力学 推流式反应器模型 催化裂化 流量(数学) 塞流 过程(计算) 混合(物理) 计算机科学 网络模型 模拟 机械 连续搅拌釜式反应器 开裂 工程类 材料科学 算法 物理 量子力学 数据库 化学工程 复合材料 操作系统
作者
Yupeng Du,Hui Zhao,An Ma,Chaohe Yang
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:54 (35): 8732-8742 被引量:20
标识
DOI:10.1021/acs.iecr.5b02109
摘要

Modeling description of riser reactors is a highly interesting issue in design and development of fluid catalytic cracking (FCC) processes. However, one of the challenging problems in the modeling of FCC riser reactors is that sophisticated flow-reaction models with high accuracy require time-consuming computation, while simple flow-reaction models with fast computation result in low-accuracy predictions. This dilemma requires new types of coupled flow-reaction models, which should own time-efficient computation and acceptable model accuracy. In this investigation, an Equivalent Reactor Network (ERN) model was developed for a pilot FCC riser reactor. The construction procedure of the ERN model contains two main steps: hydrodynamic simulations under reactive condition and determination of the equivalent reactor network structure. Numerical results demonstrate that with the ERN model the predicted averaged error of the product yields at the riser outlet is 4.69% and the computation time is ∼5 s. Contrast to the ERN model, the predicted error with the plug-flow model is almost three times larger (12.79%), and the computational time of the CFD model is 0.1 million times longer (6.7 days). The superiority of the novel ERN model can be ascribed to its reasonably simplifying transport process and avoiding calculation divergences in most CFD models, as well as taking the back-mixing behavior in the riser into consideration where the plug-flow model does not do so. In summary, the findings indicate the capabilities of the ERN model in modeling description of FCC riser reactors and the possibilities of the model being applied to studies on the dynamic simulation, optimization, and control of FCC units in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
橘柚完成签到 ,获得积分10
2秒前
zmmmm发布了新的文献求助10
2秒前
领导范儿应助温言采纳,获得10
2秒前
思源应助OvO采纳,获得10
4秒前
迷糊发布了新的文献求助30
5秒前
LY发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
KimJongUn完成签到,获得积分10
6秒前
8秒前
8秒前
zy完成签到,获得积分10
9秒前
开心果子发布了新的文献求助10
9秒前
云痴子完成签到,获得积分10
10秒前
SciGPT应助粥粥采纳,获得10
10秒前
10秒前
10秒前
11秒前
苏源完成签到,获得积分10
11秒前
wu关闭了wu文献求助
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
Shawn完成签到,获得积分10
14秒前
yltstt完成签到,获得积分10
15秒前
李小新发布了新的文献求助10
15秒前
成梦发布了新的文献求助10
16秒前
乐乐应助xuex1采纳,获得10
16秒前
蜂鸟5156发布了新的文献求助10
16秒前
李爱国应助VDC采纳,获得10
17秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808