舍瓦内拉
微生物燃料电池
枯草芽孢杆菌
希瓦氏菌属
微生物联合体
核黄素
化学
法拉第效率
食品科学
细菌
生物
微生物
电化学
遗传学
阳极
物理化学
电极
作者
Ting Liu,Yangyang Yu,Tao Chen,Wei Ning Chen
摘要
In this study, a synthetic microbial consortium containing exoelectrogen Shewanella oneidensis MR-1 and riboflavin-producing strain, Bacillus subtilis RH33, was rationally designed and successfully constructed, enabling a stable, multiple cycles of microbial fuel cells (MFCs) operation for more than 500 h. The maximum power density of MFCs with this synthetic microbial consortium was 277.4 mW/m2 , which was 4.9 times of that with MR-1 (56.9 mW/m2 ) and 40.2 times of RH33 (6.9 mW/m2 ), separately. At the same time, the Coulombic efficiency of the synthetic microbial consortium (5.6%) was higher than MR-1 (4.1%) and RH33 (2.3%). Regardless the high concentration of riboflavin produced by RH33, the power density of RH33 was rather low. The low bioelectricity generation can be ascribed to the low efficiency of RH33 in utilizing riboflavin for extracellular electron transfer (EET). In the synthetic microbial consortium of MR-1 and RH33, it was found that both mediated and direct electron transfer efficiencies were enhanced. By exchanging the anolyte of MR-1 and RH33, it was confirmed that the improved MFC performance with the synthetic microbial consortium was because MR-1 could efficiently utilize the high concentration of riboflavin produced by RH33. Biotechnol. Bioeng. 2017;114: 526-532. © 2016 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI