加氢脱氧
催化作用
除氧
苯酚
甲酸
初湿浸渍
化学
氢
贵金属
无机化学
分解
化学工程
有机化学
选择性
工程类
作者
Ying Zeng,Ze Wang,Weigang Lin,Wenli Song
标识
DOI:10.1016/j.cej.2017.03.028
摘要
In situ hydrodeoxygenation of phenol with liquid hydrogen donor over three supported Pd, Pt, and Ru catalysts was investigated. The method of incipient wetness impregnation was used to load the three noble metals on the support of MCM-41, which is a cylindrical mesoporous material with a hierarchical structure. The in situ hydrodeoxygenation of phenol was conducted at 280 °C, under pressures from saturated vapor of solvent and compressed initial N2 with gas products. Among the three catalysts, Ru/MCM-41 was found to be the best one, with highest phenol conversion of 73.9% and deoxygenation degree of 72.2%. The performance of Ru/MCM-41 increased with increasing theoretical loading amount of Ru and with reduction temperature. However, when the reduction temperature reached to 500 °C, or the Ru theoretical loading amount increased to 15 wt%, the activity of Ru/MCM-41 decreased reversely. Through the characterizations by small-angle XRD, wide-angle XRD, H2-TPR, and SEM analysis, the reason for the deteriorated performance of Ru/MCM-41 under high reduction temperature or high Ru loading amount was deduced as the collapse of MCM-41 structure and severe overlaps of Ru atoms. Hydrogen donors were also tested, and formic acid was found in best performance owing to its fast decomposition rate and high productivity of hydrogen. Though an increased feed ratio of formic acid to phenol could improve the hydrodeoxygenation potential of phenol, much simultaneously generated COx from decomposition of formic acid might occupy active sites of the catalyst and led to a decreased growth rate of phenol conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI