Double 2-dimensional H 2 -evoluting catalyst tipped photocatalyst nanowires: A new avenue for high-efficiency solar to H 2 generation

光催化 材料科学 纳米线 异质结 催化作用 氧化还原 纳米技术 半导体 化学工程 量子产额 胶体 量子点 量子效率 光电子学 化学 有机化学 工程类 物理 冶金 荧光 量子力学
作者
Kan Zhang,Shifeng Qian,Wanjung Kim,Jung Kyu Kim,Xiaowei Sheng,Jun Young Lee,Jong Hyeok Park
出处
期刊:Nano Energy [Elsevier]
卷期号:34: 481-490 被引量:54
标识
DOI:10.1016/j.nanoen.2017.03.005
摘要

Asymmetric or symmetric metal-tipped one-dimensional (1D) semiconductors are promising systems for efficient photocatalytic reactions such as solar-to-fuel conversion because of ultrafast exciton dynamics that arise at the specific heterostructure interface. However, synthesizing such unique nanostructures experiencing colloid growth on noble metal that has faced a formidable challenge in practical application because these synthesis conditions are not suitable to deploy in mass production. Here, we report the gram-scale mass production of symmetric MoS2-tipped CdS nanowires (S-MtC NWs) via edge-terminated attachment in a binary solvent. The factors influencing the formation of symmetric heterostructures are investigated by varying the types of precursors, initial concentration, and solvent composition. Under visible-light irradiation (λ≥420 nm), the S-MtC NWs exhibit superior photocatalytic H2 evolution activity (12.6 mmol/g/h) compared to common Pt/CdS NWs (2.6 mmol/g/h), corresponding to an apparent quantum yield of 37.6% at 420 nm. This impressive photocatalytic ability is ascribed to spatially separated redox-active sites in the S-MtC NWs, in which the reduction and oxidation sites are at the MoS2 tip and the CdS stem, respectively. Additionally, it is found that the length of CdS NWs as higher aspect ratio as possible could get better photocatalyst H2 performance. The symmetry of 2D MoS2 tips and 1D CdS NWs may provide advanced avenues for specific co-catalyst decoration, enabling co-catalysts to be selectively located at reduction or oxidation sites for other targeted solar artificial syntheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuuuuu完成签到,获得积分10
刚刚
li完成签到,获得积分10
1秒前
腼腆的白莲完成签到,获得积分10
1秒前
背后橘子发布了新的文献求助10
1秒前
认真宛完成签到,获得积分10
1秒前
1秒前
拉基珍完成签到,获得积分10
2秒前
凶狠的绿兰完成签到,获得积分10
2秒前
2秒前
深情安青应助我爱谭咏麟采纳,获得30
2秒前
1003完成签到,获得积分10
2秒前
2秒前
异乡人完成签到,获得积分10
3秒前
sun发布了新的文献求助10
3秒前
852应助F123采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
沉静梦曼完成签到 ,获得积分10
3秒前
liujie完成签到,获得积分10
3秒前
3秒前
奶茶一天一杯完成签到,获得积分10
4秒前
4秒前
laity完成签到,获得积分20
4秒前
4秒前
Treasure发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助乐观曼文采纳,获得10
4秒前
深海应助y蓓蓓采纳,获得10
5秒前
DONG完成签到,获得积分10
5秒前
5秒前
千万雷同发布了新的文献求助10
5秒前
5秒前
wwxx发布了新的文献求助30
5秒前
慢慢完成签到,获得积分10
5秒前
Momo007完成签到 ,获得积分10
6秒前
6秒前
6秒前
Diane完成签到,获得积分10
7秒前
7秒前
xxy发布了新的文献求助10
7秒前
沉静梦曼关注了科研通微信公众号
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433367
求助须知:如何正确求助?哪些是违规求助? 4545762
关于积分的说明 14198530
捐赠科研通 4465540
什么是DOI,文献DOI怎么找? 2447591
邀请新用户注册赠送积分活动 1438731
关于科研通互助平台的介绍 1415718