Temporal phases of long-term potentiation (LTP): myth or fact?

长时程增强 神经科学 海马结构 突触可塑性 化学 心理学 生物化学 受体
作者
Abdul-Karim Abbas,Arnauld Villers,Laurence Ris
出处
期刊:Reviews in The Neurosciences [De Gruyter]
卷期号:26 (5): 507-546 被引量:26
标识
DOI:10.1515/revneuro-2014-0072
摘要

Abstract Long-term potentiation (LTP) remains the most widely accepted model for learning and memory. In accordance with this belief, the temporal differentiation of LTP into early and late phases is accepted as reflecting the differentiation of short-term and long-term memory. Moreover, during the past 30 years, protein synthesis inhibitors have been used to separate the early, protein synthesis-independent (E-LTP) phase and the late, protein synthesis-dependent (L-LTP) phase. However, the role of these proteins has not been formally identified. Additionally, several reports failed to show an effect of protein synthesis inhibitors on LTP. In this review, a detailed analysis of extensive behavioral and electrophysiological data reveals that the presumed correspondence of LTP temporal phases to memory phases is neither experimentally nor theoretically consistent. Moreover, an overview of the time courses of E-LTP in hippocampal slices reveals a wide variability ranging from <1 h to more than 5 h. The existence of all these conflictual findings should lead to a new vision of LTP. We believe that the E-LTP vs. L-LTP distinction, established with protein synthesis inhibitor studies, reflects a false dichotomy. We suggest that the duration of LTP and its dependency on protein synthesis are related to the availability of a set of proteins at synapses and not to the de novo synthesis of plasticity-related proteins. This availability is determined by protein turnover kinetics, which is regulated by previous and ongoing electrical activities and by energy store availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Orange应助Dd18753801528采纳,获得10
2秒前
风轻青柠完成签到,获得积分10
3秒前
材料生发布了新的文献求助10
3秒前
my发布了新的文献求助10
4秒前
哆啦B梦完成签到,获得积分10
4秒前
4秒前
gusgusgus发布了新的文献求助10
4秒前
5秒前
追风少年发布了新的文献求助10
5秒前
5秒前
蔚蓝发布了新的文献求助10
6秒前
艺玲发布了新的文献求助10
8秒前
正常发布了新的文献求助10
8秒前
多多肉完成签到,获得积分10
8秒前
有点儿微胖完成签到,获得积分10
9秒前
豆4799完成签到,获得积分10
11秒前
ruby关注了科研通微信公众号
12秒前
JUGG发布了新的文献求助10
12秒前
牛马鹅完成签到,获得积分20
12秒前
gusgusgus完成签到,获得积分10
14秒前
Zy发布了新的文献求助10
15秒前
16秒前
16秒前
一平方米的大草原完成签到 ,获得积分10
17秒前
QINXIAOTONG完成签到,获得积分10
18秒前
Owen应助12123浪采纳,获得10
18秒前
lele完成签到,获得积分10
19秒前
我是老大应助大海捞针2025采纳,获得10
20秒前
华仔应助沉静弘文采纳,获得10
20秒前
20秒前
21秒前
李健应助tanfor采纳,获得10
21秒前
英俊的铭应助直率的雪巧采纳,获得10
22秒前
24秒前
啦啦啦完成签到 ,获得积分10
24秒前
lionel发布了新的文献求助10
25秒前
26秒前
渴望者发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164