Network-Based Approach for Analyzing Intra- and Interfluid Metabolite Associations in Human Blood, Urine, and Saliva

代谢组学 代谢组 代谢物 计算生物学 尿 代谢网络 计算机科学 生物 生物信息学 内分泌学
作者
Kieu Trinh,Gabi Kastenmüller,Dennis O. Mook‐Kanamori,Noha A. Yousri,Fabian J. Theis,Karsten Suhre,Jan Krumsiek
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:14 (2): 1183-1194 被引量:43
标识
DOI:10.1021/pr501130a
摘要

Most studies investigating human metabolomics measurements are limited to a single biofluid, most often blood or urine. An organism's biochemical pool, however, comprises complex transboundary relationships, which can only be understood by investigating metabolic interactions and physiological processes spanning multiple parts of the human body. Therefore, we here propose a data-driven network-based approach to generate an integrated picture of metabolomics associations over multiple fluids. We performed an analysis of 2251 metabolites measured in plasma, urine, and saliva, from 374 participants of the Qatar Metabolomics Study on Diabetes (QMDiab). Gaussian graphical models (GGMs) were used to estimate metabolite-metabolite interactions on different subsets of the data set. First, we compared similarities and differences of the metabolome and the association networks between the three fluids. Second, we investigated the cross-talk between the fluids by analyzing correlations occurring between them. Third, we propose a framework for the analysis of medically relevant phenotypes by integrating type 2 diabetes, sex, age, and body mass index into our networks. In conclusion, we present a generic, data-driven network-based approach for structuring and visualizing metabolite correlations within and between multiple body fluids, enabling unbiased interpretation of metabolomics multifluid data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助666采纳,获得10
刚刚
852应助可靠的寒风采纳,获得10
2秒前
2秒前
2秒前
4秒前
内向初兰完成签到,获得积分10
4秒前
5秒前
5秒前
隐形雁玉应助狗狗明明采纳,获得10
6秒前
ccc发布了新的文献求助10
6秒前
sak完成签到,获得积分10
7秒前
icaohao发布了新的文献求助10
8秒前
8秒前
大橙子应助夜半微风采纳,获得10
8秒前
8秒前
yusovegoistt发布了新的文献求助10
8秒前
共享精神应助777采纳,获得10
12秒前
12秒前
坤坤完成签到,获得积分10
13秒前
15秒前
ccc完成签到,获得积分10
15秒前
18秒前
慕青应助Vancy采纳,获得10
18秒前
666发布了新的文献求助10
19秒前
daisy完成签到,获得积分10
19秒前
19秒前
21秒前
犹豫觅露应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
雪满头应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得20
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416783
求助须知:如何正确求助?哪些是违规求助? 3018648
关于积分的说明 8884570
捐赠科研通 2705843
什么是DOI,文献DOI怎么找? 1483963
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681060