Reynolds Number Effects in a Low Pressure Turbine

边界层 机械 雷诺数 涡轮机 计算流体力学 入口 流动分离 Lift(数据挖掘) 湍流 Chord(对等) 边界层厚度 环境科学 材料科学 模拟 航空航天工程 物理 计算机科学 机械工程 工程类 数据挖掘 分布式计算
作者
Harjit S. Hura,John Joseph,Dave E. Halstead
标识
DOI:10.1115/gt2012-68501
摘要

This paper reports the results of an experimental and analytical study of Reynolds number (Re) effect on Low Pressure Turbine (LPT) performance. LPTs suffer both a loss in efficiency and flow capacity at altitude due to thicker boundary layers and higher viscous losses. Boundary layer separation can occur in highly loaded and/or high lift designs. The magnitude of the effect is stronger for smaller engines being designed for regional jets which may have cruising altitudes above 50K feet. There is a general lack of knowledge about performance degradation in commercial LPTs under these conditions. A test program was undertaken in a low pressure 3 stage axial turbine to quantify the effect of low Re on efficiency and flow lapse rate. Rig inlet pressures were varied from 0.27E+5 N/m2 (4 psia) to 4.40E+5 N/m2 (65 psia) to achieve over a 15 fold variation in Re. The chord based average Re varied from 30000 to 500000. Efficiency and flow function lapse of over 5% was measured. The fall off was non-linear with a rapid loss occurring at Re below 100000. 3D CFD analysis was conducted in parallel to predict overall performance but also understand loss details within the blade rows. Measured inlet profiles of total pressure, temperature and air angle, and exit static pressure were used as boundary conditions. Leakages and purge flows were modeled as source terms. A turbulence transition model and wall integration grids was used. The CFD results corroborate the test findings on the overall efficiency and flow capacity lapse rate. Analysis of blade row performance at high and low Re shows a sharp increase in profile loss at low Re.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助自觉的涵易采纳,获得10
刚刚
xh发布了新的文献求助10
1秒前
1秒前
karyoter完成签到,获得积分10
2秒前
2秒前
毛bobi完成签到,获得积分10
3秒前
3秒前
tttt完成签到,获得积分10
4秒前
4秒前
4秒前
火星人发布了新的文献求助10
4秒前
Mia发布了新的文献求助10
4秒前
mir为少发布了新的文献求助10
5秒前
背后青筠完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
梁三柏应助刘璞采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
丘比特应助hi派大星采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
上官若男应助huyu采纳,获得10
6秒前
CipherSage应助上好佳大王采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
英姑应助正在加载中采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
ChenXY应助科研通管家采纳,获得30
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
椰椰豆沙应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
科研通AI6应助kekao采纳,获得10
8秒前
wahaha发布了新的文献求助20
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482