Deformation and stress in electrode materials for Li-ion batteries

材料科学 阳极 阴极 电解质 复合材料 电化学 钝化 无定形固体 电极 淡出 压力(语言学) 法律工程学 图层(电子) 电气工程 工程类 哲学 物理化学 有机化学 化学 操作系统 语言学 计算机科学
作者
Amartya Mukhopadhyay,Brian W. Sheldon
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:63: 58-116 被引量:585
标识
DOI:10.1016/j.pmatsci.2014.02.001
摘要

Structural stability and mechanical integrity of electrode materials during lithiation/delithiation influence the performance of Li-ion batteries. Significant dimensional and volume changes are associated with variations in lattice parameters and transformations of crystalline/amorphous phases that occur during electrochemical cycling. These phenomena, which occur during Li-intercalation/deintercalation, Li-alloying/dealloying and conversion reactions, result in deformations and stress generation in the active cathode and anode materials. Such stresses can cause fragmentation, disintegration, fracturing, and loss in contact between current collectors and the active electrode materials, all of which can also expose fresh surfaces to the electrolyte. These degradation processes ultimately lead to capacity fade with electrochemical cycling for nearly all electrode materials, and are some of the major causes for the eventual failure of a Li-ion cell. Furthermore, severe stresses have made it nearly impossible to use higher capacity anode materials (e.g., Si, Sn) in practical batteries and also limit the ‘usable’ capacity of the present cathode materials (e.g., LiCoO2, LiMn2O4) to nearly half the theoretical capacity. Against this backdrop, this review presents an overview of the causes and the relative magnitudes of stresses in the various electrode materials, highlights some of the more recent discoveries concerning the causes (such as stress development due to passivation layer formation), introduces the recently developed techniques for in situ observations of lithiation induced deformations and measurement of stresses, analyses the strategies adopted for addressing the stress-related issues, and raises various issues that still need to be addressed to overcome the stress related problems that are some of the major bottlenecks towards the development of new high-capacity electrode materials for Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
派大星和海绵宝宝完成签到,获得积分10
1秒前
HYLynn完成签到,获得积分10
2秒前
赘婿应助芋泥螺蛳猫采纳,获得10
3秒前
renjiu完成签到,获得积分10
3秒前
3秒前
rrr完成签到,获得积分10
3秒前
JACK完成签到,获得积分10
4秒前
科研欣路完成签到,获得积分10
4秒前
勿庸完成签到,获得积分10
4秒前
4秒前
王乐多完成签到 ,获得积分10
4秒前
锅里有两条鱼完成签到 ,获得积分10
4秒前
5秒前
姚断天发布了新的文献求助10
5秒前
CBY发布了新的文献求助10
5秒前
庞洋发布了新的文献求助10
5秒前
5秒前
hetao286发布了新的文献求助10
6秒前
zzc完成签到 ,获得积分10
6秒前
蔺建薇完成签到,获得积分10
6秒前
whatever举报求助违规成功
6秒前
Hungrylunch举报求助违规成功
6秒前
幕帆举报求助违规成功
6秒前
6秒前
6秒前
lanjq兰坚强完成签到,获得积分10
6秒前
夏昼关注了科研通微信公众号
7秒前
7秒前
RONG发布了新的文献求助10
7秒前
艺玲发布了新的文献求助10
7秒前
核桃发布了新的文献求助10
7秒前
橘络完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
研友_VZG7GZ应助gaos采纳,获得10
8秒前
内向青文发布了新的文献求助10
8秒前
克林沙星完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740