Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

空间分析 遥感 自相关 环境科学 计算机科学 地理 统计 数学
作者
Daniel A. Griffith,Yongwan Chun
出处
期刊:Remote Sensing [MDPI AG]
卷期号:8 (7): 535-535 被引量:40
标识
DOI:10.3390/rs8070535
摘要

Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ORAzzz应助翠翠采纳,获得20
1秒前
zoe完成签到,获得积分10
1秒前
习习应助学术小白采纳,获得10
1秒前
2秒前
3秒前
tianny关注了科研通微信公众号
4秒前
4秒前
CO2发布了新的文献求助10
4秒前
桐桐应助zhangscience采纳,获得10
5秒前
求助发布了新的文献求助10
6秒前
buno应助zoe采纳,获得10
7秒前
junzilan发布了新的文献求助10
7秒前
7秒前
细品岁月完成签到 ,获得积分10
7秒前
细心书蕾完成签到 ,获得积分10
8秒前
无花果应助l11x29采纳,获得10
10秒前
10秒前
老詹头发布了新的文献求助10
10秒前
思源应助叫滚滚采纳,获得10
11秒前
12秒前
刘歌完成签到 ,获得积分10
12秒前
阿巡完成签到,获得积分10
12秒前
Chen完成签到,获得积分10
14秒前
LSH970829发布了新的文献求助10
14秒前
哈哈哈完成签到 ,获得积分10
15秒前
汤姆完成签到,获得积分10
15秒前
17秒前
17秒前
翠翠完成签到,获得积分10
18秒前
18秒前
LSH970829完成签到,获得积分10
19秒前
Lyg完成签到,获得积分20
20秒前
坚强的樱发布了新的文献求助10
20秒前
baodingning完成签到,获得积分10
21秒前
21秒前
公茂源发布了新的文献求助30
21秒前
热爱完成签到,获得积分10
22秒前
23秒前
叫滚滚发布了新的文献求助10
24秒前
星瑆心完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808