A Critical Review of Recurrent Neural Networks for Sequence Learning

计算机科学 循环神经网络 隐藏字幕 人工智能 连接主义 背景(考古学) 人工神经网络 语言模型 深度学习 自然语言 机器学习 古生物学 图像(数学) 生物
作者
Zachary C. Lipton,John Berkowitz,Charles Elkan
出处
期刊:Cornell University - arXiv 被引量:1944
标识
DOI:10.48550/arxiv.1506.00019
摘要

Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kirazou完成签到 ,获得积分10
刚刚
温酒随行完成签到,获得积分10
刚刚
不青山发布了新的文献求助10
刚刚
Larrin发布了新的文献求助10
1秒前
etzel应助keyanseng采纳,获得10
1秒前
3秒前
xxxxx完成签到,获得积分20
4秒前
5秒前
脑洞疼应助鱼柿子采纳,获得10
6秒前
领导范儿应助义气的灯泡采纳,获得10
8秒前
巧克力手印完成签到,获得积分10
9秒前
xiongdi521发布了新的文献求助10
10秒前
13秒前
三年半完成签到,获得积分10
13秒前
xiongdi521完成签到,获得积分10
13秒前
胡一刀完成签到,获得积分10
15秒前
zgd发布了新的文献求助10
16秒前
wang77发布了新的文献求助10
16秒前
自信的九娘完成签到,获得积分10
18秒前
李爱国应助赵小胖采纳,获得30
19秒前
爱笑的冷风完成签到 ,获得积分10
19秒前
桐桐应助都是采纳,获得10
19秒前
困困桃发布了新的文献求助10
21秒前
Owen应助长情的涟妖采纳,获得10
21秒前
受伤的靖琪完成签到,获得积分10
21秒前
21秒前
许中原完成签到,获得积分10
23秒前
白日幻想家完成签到 ,获得积分10
24秒前
勤奋若南完成签到,获得积分10
24秒前
眯眯眼的衬衫应助wang77采纳,获得10
26秒前
香蕉觅云应助五六七采纳,获得10
28秒前
29秒前
baby709466举报wgy求助涉嫌违规
29秒前
30秒前
嗯哼应助吨吨采纳,获得20
32秒前
lhappy233发布了新的文献求助10
34秒前
都是发布了新的文献求助10
34秒前
张张完成签到,获得积分10
38秒前
热情的乐菱完成签到,获得积分10
40秒前
40秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464444
求助须知:如何正确求助?哪些是违规求助? 3057817
关于积分的说明 9058616
捐赠科研通 2747919
什么是DOI,文献DOI怎么找? 1507640
科研通“疑难数据库(出版商)”最低求助积分说明 696603
邀请新用户注册赠送积分活动 696200