Hybrid DGA Method for Power Transformer Faults Diagnosis Based on Evolutionary k-Means Clustering and Dissolved Gas Subsets Analysis

溶解气体分析 聚类分析 数据挖掘 计算机科学 变压器 符号 电力传输 可靠性工程 工程类 人工智能 数学 电压 算术 电气工程 变压器油
作者
Arnaud Nanfak,Samuel Eke,F. Meghnefi,I. Fofana,Gildas Martial Ngaleu,Charles Hubert Kom
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:30 (5): 2421-2428 被引量:9
标识
DOI:10.1109/tdei.2023.3275119
摘要

Considered as the heart of electrical power transmission and distribution networks, power transformers are essential part of the electricity transmission grid. Among the condition monitoring and fault diagnosis tools for these machines, dissolved gas analysis (DGA) has proven its effectiveness in their early detection and classification of faults. Up to date, many methods have been proposed in the literature for the interpretation of DGA data, classified into traditional and intelligent methods. This article proposes a two-step hybrid method, which uses the strengths of both methods. The approach uses the evolutionary ${k}$ -means clustering algorithm (k-MCA) based on the genetic algorithm (GA) for subset formation and subset analysis by human expertise. In the diagnostic procedure, to determine the condition of a sample, the subset to which it belongs is first identified and then the corresponding diagnostic sub-model is applied. The proposed method has been implemented with 595 DGA data, tested on 254 DGA data, and validated on the International Electrotechnical Commission (IEC) TC10 database. Their performances were evaluated and compared with existing traditional, intelligent, and hybrid methods. From the results obtained with the IEC TC10 database, the newly proposed approach depicts the best overall diagnosis accuracies. Indeed, the best performance is achieved with the proposed method compared to other models in the literature, with diagnostic accuracy of 98.29% compared to 88.89% of the Gouda triangle method, to 88.03% of the Hyosun Corporation gas ratio method, or to 86.32% of the three ratios technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助杨枝甘露樱桃采纳,获得10
1秒前
搜集达人应助zhuzhu采纳,获得20
1秒前
LiShin发布了新的文献求助10
2秒前
末岛发布了新的文献求助10
2秒前
2秒前
coffee完成签到,获得积分10
3秒前
李来仪发布了新的文献求助10
3秒前
长安完成签到,获得积分10
4秒前
Hao完成签到,获得积分10
4秒前
JamesPei应助王小志采纳,获得10
4秒前
詹密完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
酷波er应助NEMO采纳,获得10
7秒前
7秒前
7秒前
7秒前
情怀应助shirleeyeahe采纳,获得10
7秒前
8秒前
元元应助xzy采纳,获得20
8秒前
泥花完成签到,获得积分10
8秒前
247793325完成签到,获得积分20
8秒前
眼睛大的冰岚完成签到,获得积分10
8秒前
YY完成签到 ,获得积分10
8秒前
9秒前
雨天慢行完成签到,获得积分10
9秒前
韦威风发布了新的文献求助10
9秒前
科目三应助深情的不评采纳,获得10
9秒前
飞快的梦易完成签到,获得积分10
10秒前
Akim应助1b采纳,获得10
10秒前
末岛完成签到,获得积分10
10秒前
sweetbearm应助benben采纳,获得10
10秒前
10秒前
11秒前
科研通AI5应助今今采纳,获得10
11秒前
通~发布了新的文献求助10
11秒前
YY完成签到,获得积分10
11秒前
首席医官完成签到,获得积分10
12秒前
坚定迎天完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794