Hybrid DGA Method for Power Transformer Faults Diagnosis Based on Evolutionary k-Means Clustering and Dissolved Gas Subsets Analysis

溶解气体分析 聚类分析 数据挖掘 计算机科学 变压器 符号 电力传输 可靠性工程 工程类 人工智能 数学 电压 变压器油 电气工程 算术
作者
Arnaud Nanfak,Samuel Eke,F. Meghnefi,I. Fofana,Gildas Martial Ngaleu,Charles Hubert Kom
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:30 (5): 2421-2428 被引量:13
标识
DOI:10.1109/tdei.2023.3275119
摘要

Considered as the heart of electrical power transmission and distribution networks, power transformers are essential part of the electricity transmission grid. Among the condition monitoring and fault diagnosis tools for these machines, dissolved gas analysis (DGA) has proven its effectiveness in their early detection and classification of faults. Up to date, many methods have been proposed in the literature for the interpretation of DGA data, classified into traditional and intelligent methods. This article proposes a two-step hybrid method, which uses the strengths of both methods. The approach uses the evolutionary ${k}$ -means clustering algorithm (k-MCA) based on the genetic algorithm (GA) for subset formation and subset analysis by human expertise. In the diagnostic procedure, to determine the condition of a sample, the subset to which it belongs is first identified and then the corresponding diagnostic sub-model is applied. The proposed method has been implemented with 595 DGA data, tested on 254 DGA data, and validated on the International Electrotechnical Commission (IEC) TC10 database. Their performances were evaluated and compared with existing traditional, intelligent, and hybrid methods. From the results obtained with the IEC TC10 database, the newly proposed approach depicts the best overall diagnosis accuracies. Indeed, the best performance is achieved with the proposed method compared to other models in the literature, with diagnostic accuracy of 98.29% compared to 88.89% of the Gouda triangle method, to 88.03% of the Hyosun Corporation gas ratio method, or to 86.32% of the three ratios technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月光沉沉完成签到,获得积分10
刚刚
刚刚
Wang完成签到,获得积分10
刚刚
!!!发布了新的文献求助10
刚刚
开心妙旋完成签到,获得积分20
1秒前
1秒前
2秒前
潘森爱科研完成签到,获得积分10
2秒前
mochi发布了新的文献求助10
2秒前
2秒前
2秒前
唠叨的小凝完成签到,获得积分10
3秒前
叶子宁完成签到,获得积分10
3秒前
老实幻姬应助橙子采纳,获得20
3秒前
3秒前
4秒前
4秒前
忆夕发布了新的文献求助10
5秒前
白日幻想家完成签到,获得积分10
5秒前
共享精神应助呼伦河小马采纳,获得10
5秒前
CipherSage应助何事惊慌采纳,获得10
5秒前
6秒前
传奇3应助夏冰采纳,获得10
6秒前
浮游应助heyyyy采纳,获得10
6秒前
王玥荟完成签到 ,获得积分10
6秒前
6秒前
!!!完成签到,获得积分20
6秒前
沉默的绮玉完成签到,获得积分10
7秒前
7秒前
万能图书馆应助活力谷南采纳,获得10
7秒前
7秒前
DD发布了新的文献求助10
7秒前
7秒前
正直的黄豆完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
不会科研的混子完成签到,获得积分10
8秒前
8秒前
8秒前
汉堡包应助卷卷采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4891271
求助须知:如何正确求助?哪些是违规求助? 4174825
关于积分的说明 12957411
捐赠科研通 3937032
什么是DOI,文献DOI怎么找? 2159946
邀请新用户注册赠送积分活动 1178297
关于科研通互助平台的介绍 1083854