Hybrid DGA Method for Power Transformer Faults Diagnosis Based on Evolutionary k-Means Clustering and Dissolved Gas Subsets Analysis

溶解气体分析 聚类分析 数据挖掘 计算机科学 变压器 符号 电力传输 可靠性工程 工程类 人工智能 数学 电压 变压器油 电气工程 算术
作者
Arnaud Nanfak,Samuel Eke,F. Meghnefi,I. Fofana,Gildas Martial Ngaleu,Charles Hubert Kom
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:30 (5): 2421-2428 被引量:9
标识
DOI:10.1109/tdei.2023.3275119
摘要

Considered as the heart of electrical power transmission and distribution networks, power transformers are essential part of the electricity transmission grid. Among the condition monitoring and fault diagnosis tools for these machines, dissolved gas analysis (DGA) has proven its effectiveness in their early detection and classification of faults. Up to date, many methods have been proposed in the literature for the interpretation of DGA data, classified into traditional and intelligent methods. This article proposes a two-step hybrid method, which uses the strengths of both methods. The approach uses the evolutionary ${k}$ -means clustering algorithm (k-MCA) based on the genetic algorithm (GA) for subset formation and subset analysis by human expertise. In the diagnostic procedure, to determine the condition of a sample, the subset to which it belongs is first identified and then the corresponding diagnostic sub-model is applied. The proposed method has been implemented with 595 DGA data, tested on 254 DGA data, and validated on the International Electrotechnical Commission (IEC) TC10 database. Their performances were evaluated and compared with existing traditional, intelligent, and hybrid methods. From the results obtained with the IEC TC10 database, the newly proposed approach depicts the best overall diagnosis accuracies. Indeed, the best performance is achieved with the proposed method compared to other models in the literature, with diagnostic accuracy of 98.29% compared to 88.89% of the Gouda triangle method, to 88.03% of the Hyosun Corporation gas ratio method, or to 86.32% of the three ratios technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gutfh发布了新的文献求助10
2秒前
6秒前
bing发布了新的文献求助50
6秒前
meng若完成签到 ,获得积分10
8秒前
完美世界应助123采纳,获得10
8秒前
荞麦小丸发布了新的文献求助10
8秒前
Frose发布了新的文献求助10
10秒前
可爱的函函应助overThat采纳,获得10
10秒前
JDM发布了新的文献求助10
11秒前
在水一方应助兴奋的觅露采纳,获得10
11秒前
gutfh完成签到,获得积分10
13秒前
万能图书馆应助cdercder采纳,获得10
13秒前
充电宝应助专一的纸飞机采纳,获得10
15秒前
15秒前
16秒前
17秒前
JINNY完成签到,获得积分10
18秒前
overThat发布了新的文献求助10
20秒前
Aha完成签到 ,获得积分10
20秒前
请勿继续完成签到,获得积分10
20秒前
张先生2365完成签到,获得积分10
21秒前
共享精神应助自然的含蕾采纳,获得10
21秒前
tcmz9发布了新的文献求助10
21秒前
24秒前
VDC应助大气的远望采纳,获得30
25秒前
27秒前
27秒前
兔兔发布了新的文献求助10
27秒前
研友_8QxN1Z完成签到,获得积分10
31秒前
32秒前
星辰大海应助姚三斤采纳,获得10
34秒前
34秒前
34秒前
灵巧忆南完成签到,获得积分10
36秒前
55完成签到,获得积分10
36秒前
37秒前
Akim应助Frose采纳,获得10
38秒前
嘟嘟发布了新的文献求助10
38秒前
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342817
求助须知:如何正确求助?哪些是违规求助? 2969878
关于积分的说明 8641710
捐赠科研通 2649819
什么是DOI,文献DOI怎么找? 1450934
科研通“疑难数据库(出版商)”最低求助积分说明 672006
邀请新用户注册赠送积分活动 661338