WetMapFormer: A unified deep CNN and vision transformer for complex wetland mapping

卷积神经网络 湿地 人工智能 深度学习 计算机科学 环境科学 地理 遥感 地图学 生态学 生物
作者
Ali Jamali,Swalpa Kumar Roy,Pedram Ghamisi
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:120: 103333-103333 被引量:21
标识
DOI:10.1016/j.jag.2023.103333
摘要

The Ramsar Convention of 1971 encourages wetland preservation, but it is unclear how climate change will affect wetland extent and related biodiversity. Due to the use of the self-attention mechanism, vision transformers (ViTs) gain better modeling of global contextual information and become a powerful alternative to Convolutional Neural Networks (CNNs). However, ViTs require enormous training datasets to activate their image classification power, and gathering training samples for remote sensing applications is typically costly. As such, in this study, we develop a deep learning algorithm called (WetMapFormer), which effectively utilizes both CNNs and vision transformer architectures for precise mapping of wetlands in three pilot sites around the Albert county, York county, and Grand Bay-Westfield located in New Brunswick, Canada. The WetMapFormer utilizes local window attention (LWA) rather than the conventional self-attention mechanism for improving the capability of feature generalization in a local area by substantially reducing the computational cost of vanilla ViTs. We extensively evaluated the robustness of the proposed WetMapFormer with Sentinel-1 and Sentinel-2 satellite data and compared it with the various CNNs and vision transformer models which include ViT, Swin Transformer, HybridSN, CoAtNet, a multimodel network, and ResNet, respectively. The proposed WetMapFormer achieves F-1 scores of 0.94, 0.94, 0.96, 0.97, 0.97, 0.97, and 1 for the recognition of aquatic bed, freshwater marsh, shrub wetland, bog, fen, forested wetland, and water, respectively. As compared to other vision transformers, the WetMapFormer limits receptive fields while adjusting translational invariance and equivariance characteristics. The codes will be made available publicly at https://github.com/aj1365/WetMapFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你哈完成签到 ,获得积分10
1秒前
azw完成签到,获得积分10
1秒前
吴彦祖发布了新的文献求助10
1秒前
槿忆萱影应助高高的戎采纳,获得10
1秒前
2秒前
2秒前
3秒前
我不爱池鱼应助lwypku采纳,获得10
3秒前
DHW完成签到,获得积分10
3秒前
VCC完成签到,获得积分20
3秒前
3秒前
123456完成签到,获得积分10
3秒前
starry完成签到,获得积分10
3秒前
WFF发布了新的文献求助10
4秒前
滋达不溜完成签到,获得积分10
4秒前
Rogerlee完成签到,获得积分10
6秒前
6秒前
酷炫斓发布了新的文献求助10
7秒前
VCC发布了新的文献求助10
7秒前
郑明明完成签到,获得积分10
7秒前
lixiaohe908发布了新的文献求助30
7秒前
Aries发布了新的文献求助30
8秒前
虚心以丹完成签到,获得积分10
8秒前
8秒前
8秒前
半分青完成签到,获得积分10
9秒前
9秒前
庸俗发布了新的文献求助10
9秒前
10秒前
共享精神应助侯晓宝采纳,获得10
11秒前
11秒前
混子完成签到,获得积分10
11秒前
懵懂的明辉完成签到,获得积分10
12秒前
mhl11应助小马同志采纳,获得10
14秒前
城南花已开完成签到,获得积分10
15秒前
顺科研发布了新的文献求助10
15秒前
hwj完成签到,获得积分10
16秒前
16秒前
李大白发布了新的文献求助10
18秒前
萧水白应助小张同学采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648