WetMapFormer: A unified deep CNN and vision transformer for complex wetland mapping

卷积神经网络 湿地 人工智能 深度学习 计算机科学 环境科学 地理 遥感 地图学 生态学 生物
作者
Ali Jamali,Swalpa Kumar Roy,Pedram Ghamisi
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:120: 103333-103333 被引量:21
标识
DOI:10.1016/j.jag.2023.103333
摘要

The Ramsar Convention of 1971 encourages wetland preservation, but it is unclear how climate change will affect wetland extent and related biodiversity. Due to the use of the self-attention mechanism, vision transformers (ViTs) gain better modeling of global contextual information and become a powerful alternative to Convolutional Neural Networks (CNNs). However, ViTs require enormous training datasets to activate their image classification power, and gathering training samples for remote sensing applications is typically costly. As such, in this study, we develop a deep learning algorithm called (WetMapFormer), which effectively utilizes both CNNs and vision transformer architectures for precise mapping of wetlands in three pilot sites around the Albert county, York county, and Grand Bay-Westfield located in New Brunswick, Canada. The WetMapFormer utilizes local window attention (LWA) rather than the conventional self-attention mechanism for improving the capability of feature generalization in a local area by substantially reducing the computational cost of vanilla ViTs. We extensively evaluated the robustness of the proposed WetMapFormer with Sentinel-1 and Sentinel-2 satellite data and compared it with the various CNNs and vision transformer models which include ViT, Swin Transformer, HybridSN, CoAtNet, a multimodel network, and ResNet, respectively. The proposed WetMapFormer achieves F-1 scores of 0.94, 0.94, 0.96, 0.97, 0.97, 0.97, and 1 for the recognition of aquatic bed, freshwater marsh, shrub wetland, bog, fen, forested wetland, and water, respectively. As compared to other vision transformers, the WetMapFormer limits receptive fields while adjusting translational invariance and equivariance characteristics. The codes will be made available publicly at https://github.com/aj1365/WetMapFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lizhen完成签到,获得积分10
刚刚
Angus发布了新的文献求助20
刚刚
大个应助江伊采纳,获得10
刚刚
小小柴完成签到,获得积分10
1秒前
鳗鱼没发布了新的文献求助10
1秒前
1秒前
mm完成签到,获得积分10
1秒前
2秒前
糖淘淘完成签到,获得积分10
2秒前
小任吃不胖完成签到,获得积分10
2秒前
SKX发布了新的文献求助10
3秒前
谨慎的雁桃完成签到,获得积分10
4秒前
5秒前
Margaret完成签到 ,获得积分10
5秒前
ajiduo发布了新的文献求助10
6秒前
7秒前
8秒前
yhl发布了新的文献求助10
9秒前
卿久久完成签到,获得积分10
10秒前
NexusExplorer应助桃子采纳,获得10
10秒前
JamesPei应助英勇的香芦采纳,获得10
11秒前
x-yun宝发布了新的文献求助10
14秒前
Gj完成签到,获得积分10
14秒前
和谐书瑶完成签到,获得积分20
15秒前
yhl完成签到,获得积分20
15秒前
大个应助冷傲的靖易采纳,获得10
16秒前
hsyh发布了新的文献求助30
17秒前
17秒前
18秒前
SKX完成签到,获得积分20
19秒前
科研通AI5应助单纯的手机采纳,获得10
19秒前
科研通AI5应助洪伟采纳,获得10
19秒前
王圆发布了新的文献求助10
21秒前
21秒前
虚幻盼晴完成签到,获得积分10
22秒前
22秒前
平常的毛豆应助Binbin采纳,获得10
23秒前
24秒前
李爱国应助Angus采纳,获得10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842012
求助须知:如何正确求助?哪些是违规求助? 3384135
关于积分的说明 10532872
捐赠科研通 3104461
什么是DOI,文献DOI怎么找? 1709640
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953