光电阴极
光化学
化学
光催化
钼
氧化还原
催化作用
材料科学
电子
无机化学
有机化学
物理
量子力学
作者
Chung Hyun Lee,Jin‐Hyun Kim,Chan Beum Park
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-05-08
卷期号:8 (6): 2513-2521
被引量:9
标识
DOI:10.1021/acsenergylett.3c00587
摘要
The natural Z-schematic photosynthesis is a promising catalytic model for solar-to-chemical conversion. Here, we construct a Z-schematic, wireless photoelectrocatalytic (PEC) system (i.e., artificial leaf) for biocatalytic oxyfunctionalization of hydrocarbons. The monolithic leaf structure consists of a tandem photoanode|photocathode configuration that uses sunlight as the sole energy source to drive redox reactions. Under solar light, the ferric oxyhydroxide-coated, molybdenum-doped bismuth vanadate (FeOOH|Mo:BVO) photoanode extracts electrons from H2O electron feedstock and transfers the electrons to the conjugated polyterthiophene (pTTh) photocathode. Meanwhile, the pTTh photocathode absorbs FeOOH|Mo:BVO-filtered light for O2 reduction to H2O2. The in situ generated H2O2 activates unspecific peroxygenases (UPOs) to drive enantioselective C–H oxyfunctionalization (e.g., hydroxylation and epoxidation). Furthermore, we solve HO•-mediated inactivation of UPOs using a cellulose membrane, which increases enzymatic productivity with a benchmark total turnover number of 193 000 among PEC and photocatalytic platforms that trigger UPO-mediated synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI