Interfacial binding rope theory of ion transport in sub-nanochannels and its application for osmotic energy conversion

二价 水化能 密度泛函理论 化学物理 无机化学 离子 结合能 材料科学 电荷密度 选择性 分子 化学工程 化学 计算化学 有机化学 原子物理学 工程类 物理 催化作用 量子力学
作者
Q. Liu,Qiang Wang,Zhiguo Qu,Jianfei Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:113: 108545-108545 被引量:8
标识
DOI:10.1016/j.nanoen.2023.108545
摘要

Osmotic energy conversion is a promising method of sustainable electricity generation using seawater and river water. Artificial pure NaCl solutions are commonly used, whereas the effects of multivalent-ion ingredients present in natural seawater on osmotic power generation remain unclear. In this study, the impacts of coexisting ions in multicomponent seawater (MS) are experimentally assessed using graphene oxide membrane (GOM). Divalent cation in MS shows inferior transport to monovalent cation, thereby presenting a lower power density than when using pure NaCl solutions. Inspired by experimental results, an interfacial binding rope theory is proposed to clarify ion-wall interactions and cation transport in sub-nanochannels with hydrophilic functional groups. The binding rope networks include direct cation-wall connections mediated by composition-changed hydration shells, indirect connections by H-bonds linking solvated water molecules and functional groups, and electrostatic attractions between cations and negatively charged surfaces. The theory feasibility is confirmed by first-principles calculations focusing on the charge distribution, binding site and length, surface electrification, and cation diffusivity and selectivity in GOM sub-nanochannels. Divalent cation diffuses slower than monovalent cation in both pure solutions and confined channels. For the mixed solution in channels, both monovalent and divalent cations show worse diffusivities due to additional monovalent-divalent electrostatic repulsions, as well as inferior cation selectivity due to weakened deprotonation reactions. Bridged by environment-controlled interfacial potential distribution, ion diffusivity, and ion selectivity, this theory guides the improvement of MS-based osmotic performance under regulations of concentration gradient, pH, and temperature. A power density of 8.52 W m–2 and stable output within 27 days are achieved. The interfacial binding rope theory could be popularized to refine the transport mechanisms of various cations in diverse hydrophilic sub-nanochannel materials, promoting the application of osmotic power generation and other nanoscale technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincent24S完成签到,获得积分10
刚刚
刚刚
zsj3787完成签到,获得积分20
刚刚
cxqygdn完成签到,获得积分10
1秒前
yinhe发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
NL完成签到,获得积分10
1秒前
软甜纱雾发布了新的文献求助10
2秒前
1234star发布了新的文献求助10
3秒前
研友_VZG7GZ应助嗳7采纳,获得10
3秒前
4秒前
zzz完成签到,获得积分20
5秒前
nofap发布了新的文献求助10
6秒前
BruceKKKK完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
10秒前
11秒前
12秒前
科研通AI2S应助SisiZheng采纳,获得10
12秒前
安静的瑾瑜完成签到 ,获得积分10
12秒前
旺仔完成签到 ,获得积分10
12秒前
Dong完成签到 ,获得积分10
13秒前
13秒前
hyou完成签到,获得积分10
13秒前
14秒前
写不出来发布了新的文献求助10
14秒前
15秒前
16秒前
方寸发布了新的文献求助10
16秒前
17秒前
18秒前
不想当打工人完成签到,获得积分10
18秒前
懦弱的吐司完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
拾柒发布了新的文献求助10
20秒前
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470572
求助须知:如何正确求助?哪些是违规求助? 3063599
关于积分的说明 9084461
捐赠科研通 2754032
什么是DOI,文献DOI怎么找? 1511188
邀请新用户注册赠送积分活动 698333
科研通“疑难数据库(出版商)”最低求助积分说明 698221