Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:238: 107602-107602 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俗人完成签到,获得积分10
1秒前
Hesper发布了新的文献求助30
1秒前
沉默小天鹅应助李金文采纳,获得10
1秒前
2秒前
从容飞烟完成签到,获得积分10
2秒前
共享精神应助夏虫采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
斌帥发布了新的文献求助10
3秒前
zhiguoxin完成签到 ,获得积分10
4秒前
肥小耗发布了新的文献求助10
4秒前
4秒前
4秒前
kevindm完成签到,获得积分10
5秒前
lili发布了新的文献求助10
5秒前
乐乐应助平常无颜采纳,获得10
6秒前
科研通AI6应助冷艳的钥匙采纳,获得10
6秒前
7秒前
隐形曼青应助Jiayi采纳,获得10
7秒前
eeush发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
zxe发布了新的文献求助30
7秒前
Mingda发布了新的文献求助10
7秒前
8秒前
盛yyyy完成签到,获得积分10
8秒前
9秒前
汉堡包应助lalala采纳,获得10
9秒前
10秒前
科研通AI6应助易辙采纳,获得10
10秒前
11秒前
www发布了新的文献求助10
11秒前
11秒前
哈哈哈完成签到 ,获得积分20
11秒前
科研通AI2S应助李金文采纳,获得10
11秒前
黄黄发布了新的文献求助10
12秒前
keanu发布了新的文献求助20
12秒前
12秒前
辛勤的乐荷完成签到,获得积分10
13秒前
斯文的元柏完成签到,获得积分20
14秒前
14秒前
科研通AI2S应助靓丽的硬币采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067