Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107602-107602 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fzhou完成签到 ,获得积分10
1秒前
尘雾发布了新的文献求助10
1秒前
2秒前
一一发布了新的文献求助20
2秒前
2秒前
Aixia完成签到 ,获得积分10
3秒前
葡萄糖完成签到,获得积分10
3秒前
哈哈完成签到,获得积分10
3秒前
在水一方应助CC采纳,获得10
3秒前
3秒前
余笙完成签到 ,获得积分10
4秒前
神勇的雅香应助科研混子采纳,获得10
4秒前
TT发布了新的文献求助10
5秒前
李顺完成签到,获得积分20
6秒前
ayin发布了新的文献求助10
6秒前
wait发布了新的文献求助10
6秒前
我是站长才怪应助xg采纳,获得10
7秒前
童话艺术佳完成签到,获得积分10
7秒前
稀罕你完成签到,获得积分10
7秒前
junzilan发布了新的文献求助10
7秒前
anny.white完成签到,获得积分10
8秒前
科研通AI5应助平常的毛豆采纳,获得10
10秒前
SciGPT应助paul采纳,获得10
13秒前
15秒前
英姑应助书生采纳,获得10
16秒前
科研钓鱼佬完成签到,获得积分10
17秒前
19秒前
petrichor应助C_Cppp采纳,获得10
19秒前
nan完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
勤恳的雨文完成签到,获得积分10
20秒前
木森ab发布了新的文献求助10
21秒前
paul完成签到,获得积分10
21秒前
小鞋完成签到,获得积分10
22秒前
开心青旋发布了新的文献求助10
22秒前
fztnh发布了新的文献求助10
22秒前
无名花生完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824