已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107602-107602 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的忆梅完成签到 ,获得积分10
1秒前
Jinyang发布了新的文献求助10
1秒前
搜集达人应助阔达宝莹采纳,获得10
2秒前
回忆告白发布了新的文献求助20
4秒前
simple发布了新的文献求助10
4秒前
4秒前
LINGXINYUE完成签到,获得积分10
6秒前
忧虑的翠彤完成签到,获得积分20
6秒前
许许欣冉完成签到,获得积分10
7秒前
libin完成签到,获得积分10
8秒前
小马驹完成签到 ,获得积分10
9秒前
小蘑菇应助孤独的小玉采纳,获得10
10秒前
Aurora发布了新的文献求助10
10秒前
11秒前
在水一方应助Jie采纳,获得10
12秒前
田様应助日尧采纳,获得30
14秒前
1234完成签到 ,获得积分10
14秒前
小二郎应助momo采纳,获得10
14秒前
天天快乐应助张雪婷采纳,获得10
17秒前
17秒前
寒冷的觅翠完成签到,获得积分10
18秒前
19秒前
19秒前
xuxingxing发布了新的文献求助10
20秒前
simple完成签到,获得积分10
22秒前
小二郎应助Jinyang采纳,获得10
22秒前
Jie发布了新的文献求助10
25秒前
26秒前
易水完成签到 ,获得积分10
26秒前
会科研的胡萝卜完成签到,获得积分10
26秒前
28秒前
lily发布了新的文献求助10
28秒前
31秒前
忧虑的以菱完成签到,获得积分10
31秒前
张雪婷发布了新的文献求助10
32秒前
88C真是太神奇啦完成签到 ,获得积分10
33秒前
33秒前
狂野的雨灵完成签到,获得积分10
34秒前
34秒前
吃鱼的猫完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679