已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107602-107602 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
blue完成签到 ,获得积分10
2秒前
顾右发布了新的文献求助10
3秒前
小昭发布了新的文献求助10
4秒前
samky发布了新的文献求助10
4秒前
6秒前
6秒前
畅快的书雪完成签到,获得积分10
7秒前
半导体物理完成签到,获得积分10
9秒前
南汐完成签到,获得积分10
9秒前
L1完成签到 ,获得积分10
11秒前
小昭完成签到,获得积分10
12秒前
汉堡包应助畅快的书雪采纳,获得10
12秒前
年少轻狂最情深完成签到 ,获得积分10
13秒前
15秒前
samky完成签到,获得积分10
18秒前
朴素苑睐完成签到 ,获得积分10
18秒前
19秒前
奔跑石小猛完成签到,获得积分10
20秒前
朴素苑睐关注了科研通微信公众号
22秒前
思源应助远枫orz采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
Criminology34应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
27秒前
Gun完成签到,获得积分10
28秒前
科研通AI2S应助vivi采纳,获得10
28秒前
小巧怀薇完成签到,获得积分10
31秒前
32秒前
34秒前
StonesKing完成签到,获得积分20
35秒前
ccm应助阿Q采纳,获得30
35秒前
清秀灵薇完成签到,获得积分10
35秒前
siji发布了新的文献求助10
36秒前
38秒前
39秒前
StonesKing发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418147
求助须知:如何正确求助?哪些是违规求助? 4533868
关于积分的说明 14142681
捐赠科研通 4450148
什么是DOI,文献DOI怎么找? 2441102
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079