Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:238: 107602-107602 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的小海豚完成签到,获得积分10
刚刚
科研通AI2S应助知性的采珊采纳,获得10
3秒前
8秒前
SciGPT应助ly采纳,获得10
11秒前
千殇发布了新的文献求助10
14秒前
16秒前
freeway完成签到,获得积分10
17秒前
浩仔发布了新的文献求助10
21秒前
24秒前
欢喜板凳完成签到 ,获得积分10
25秒前
她的城完成签到,获得积分0
28秒前
kyle完成签到,获得积分10
29秒前
JACK完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
哈哈哈完成签到 ,获得积分10
32秒前
华仔应助万文涛采纳,获得10
32秒前
干净映天完成签到 ,获得积分10
32秒前
科研通AI2S应助kyle采纳,获得10
33秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
浩仔完成签到,获得积分10
35秒前
sunnyqqz完成签到,获得积分10
35秒前
phobeeee完成签到 ,获得积分10
36秒前
千殇发布了新的文献求助10
37秒前
AllWeKnow完成签到,获得积分10
38秒前
香蕉觅云应助知性的采珊采纳,获得10
38秒前
安静的天思完成签到,获得积分20
38秒前
Johnson给Johnson的求助进行了留言
40秒前
背书强完成签到 ,获得积分10
41秒前
小鱼小鱼快快游完成签到 ,获得积分10
42秒前
coolkid应助科研通管家采纳,获得10
42秒前
coolkid应助科研通管家采纳,获得10
42秒前
无花果应助科研通管家采纳,获得10
42秒前
coolkid应助科研通管家采纳,获得10
42秒前
无语的寒天完成签到 ,获得积分10
42秒前
coolkid应助科研通管家采纳,获得10
42秒前
关中人完成签到,获得积分10
50秒前
Acid完成签到 ,获得积分10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957139
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111449
捐赠科研通 3234227
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318