Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:238: 107602-107602 被引量:16
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖的花园完成签到 ,获得积分10
1秒前
科研人完成签到,获得积分10
2秒前
感动早晨完成签到,获得积分20
2秒前
科研通AI2S应助666采纳,获得10
3秒前
FJ完成签到,获得积分10
3秒前
一坨完成签到 ,获得积分10
3秒前
zcz完成签到 ,获得积分0
5秒前
范礼运20810完成签到 ,获得积分10
6秒前
6秒前
内向的青荷完成签到,获得积分10
6秒前
6秒前
clarklkq完成签到,获得积分10
6秒前
WUWU2435完成签到,获得积分10
6秒前
小米完成签到,获得积分20
7秒前
8秒前
wwf完成签到,获得积分10
8秒前
想早点退休完成签到,获得积分10
8秒前
9秒前
无花果应助枕雪听冷冷采纳,获得30
9秒前
10秒前
头号玩家发布了新的文献求助10
12秒前
GongSyi完成签到 ,获得积分10
13秒前
6666666666完成签到 ,获得积分10
13秒前
ZQJ完成签到,获得积分20
13秒前
14秒前
花花发布了新的文献求助10
15秒前
ethyxwat发布了新的文献求助10
15秒前
嗨是完成签到,获得积分10
15秒前
ZQJ发布了新的文献求助20
16秒前
流川枫完成签到,获得积分10
16秒前
星月夜完成签到,获得积分10
17秒前
Lucas应助诚心茈采纳,获得10
17秒前
白藤总是一坨肉完成签到 ,获得积分10
17秒前
Yly发布了新的文献求助10
18秒前
19秒前
共渡完成签到,获得积分10
20秒前
吧KO完成签到,获得积分10
20秒前
时舒完成签到 ,获得积分10
21秒前
古藤完成签到 ,获得积分10
22秒前
whg完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910842
求助须知:如何正确求助?哪些是违规求助? 4186455
关于积分的说明 12999825
捐赠科研通 3954044
什么是DOI,文献DOI怎么找? 2168261
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909