已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI

计算机科学 人工智能 卷积神经网络 分割 胼胝体 模式识别(心理学) 图像(数学) 图像分割 网(多面体) 计算机视觉 解剖 医学 数学 几何学
作者
Kelvin K. L. Wong,Wanni Xu,Muhammad Ayoub,You-Lei Fu,Huasen Xu,Ruizheng Shi,Mu Zhang,Feng Su,Zhiguo Huang,Weimin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107602-107602 被引量:14
标识
DOI:10.1016/j.cmpb.2023.107602
摘要

Traditional disease diagnosis is usually performed by experienced physicians, but misdiagnosis or missed diagnosis still exists. Exploring the relationship between changes in the corpus callosum and multiple brain infarcts requires extracting corpus callosum features from brain image data, which requires addressing three key issues. (1) automation, (2) completeness, and (3) accuracy. Residual learning can facilitate network training, Bi-Directional Convolutional LSTM (BDC-LSTM) can exploit interlayer spatial dependencies, and HDC can expand the receptive domain without losing resolution. In this paper, we propose a segmentation method by combining BDC-LSTM and U-Net to segment the corpus callosum from multiple angles of brain images based on computed tomography (CT) and magnetic resonance imaging (MRI) in which two types of sequence, namely T2-weighted imaging as well as the Fluid Attenuated Inversion Recovery (Flair), were utilized. The two-dimensional slice sequences are segmented in the cross-sectional plane, and the segmentation results are combined to obtain the final results. Encoding, BDC- LSTM, and decoding include convolutional neural networks. The coding part uses asymmetric convolutional layers of different sizes and dilated convolutions to get multi-slice information and extend the convolutional layers' perceptual field. This paper uses BDC-LSTM between the encoding and decoding parts of the algorithm. On the image segmentation of the brain in multiple cerebral infarcts dataset, accuracy rates of 0.876, 0.881, 0.887, and 0.912 were attained for the intersection of union (IOU), dice similarity coefficient (DS), sensitivity (SE), and predictive positivity value (PPV). The experimental findings demonstrate that the algorithm outperforms its rivals in accuracy. This paper obtained segmentation results for three images using three models, ConvLSTM, Pyramid-LSTM, and BDC-LSTM, and compared them to verify that BDC-LSTM is the best method to perform the segmentation task for faster and more accurate detection of 3D medical images. We improve the convolutional neural network segmentation method to obtain medical images with high segmentation accuracy by solving the over-segmentation problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助鸿儒采纳,获得10
刚刚
QQ发布了新的文献求助10
1秒前
LRxxx完成签到 ,获得积分10
1秒前
orixero应助哈密采纳,获得10
1秒前
十三完成签到 ,获得积分10
2秒前
搜集达人应助饱满金毛采纳,获得10
3秒前
shadow完成签到 ,获得积分10
3秒前
wrr发布了新的文献求助10
3秒前
Chloe完成签到 ,获得积分10
5秒前
良菵完成签到 ,获得积分10
7秒前
Ari_Kun完成签到 ,获得积分10
8秒前
9秒前
Charlie完成签到,获得积分10
9秒前
zmaifyc完成签到 ,获得积分10
10秒前
简默完成签到,获得积分10
11秒前
111完成签到 ,获得积分10
12秒前
wrr完成签到,获得积分10
12秒前
点一个随机昵称完成签到 ,获得积分10
12秒前
12秒前
wang5945完成签到 ,获得积分10
13秒前
taku完成签到 ,获得积分10
14秒前
liway完成签到 ,获得积分10
14秒前
杨哈哈完成签到,获得积分20
14秒前
搞怪的老九应助YJ888采纳,获得10
14秒前
落寞书易完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
HYQ完成签到 ,获得积分10
17秒前
听话的寄灵完成签到,获得积分10
18秒前
共享精神应助清清采纳,获得10
18秒前
小白完成签到 ,获得积分10
19秒前
peterwei272完成签到 ,获得积分10
20秒前
20秒前
杨哈哈发布了新的文献求助10
20秒前
shencheng发布了新的文献求助10
21秒前
顺心的猪完成签到 ,获得积分10
23秒前
wsb76完成签到 ,获得积分10
23秒前
NexusExplorer应助鸿儒采纳,获得10
25秒前
阿飞完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314289
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530830
捐赠科研通 2622299
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838