Accelerating aerodynamic design optimization based on graph convolutional neural network

计算机科学 加速 空气动力学 稳健性(进化) 人工神经网络 卷积神经网络 人工智能 翼型 并行计算 航空航天工程 生物化学 基因 工程类 化学
作者
Tiejun Li,Junjun Yan,Xinhai Chen,Zhichao Wang,Qingyang Zhang,Eric Zhou,Chunye Gong,Jie Liu
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:35 (01)
标识
DOI:10.1142/s0129183124500074
摘要

Computational fluid dynamics (CFD) plays a critical role in many scientific and engineering applications, with aerodynamic design optimization being a primary area of interest. Recently, there has been much interest in using artificial intelligence approaches to accelerate this process. One promising method is the graph convolutional neural network (GCN), a deep learning method based on artificial neural networks (ANNs). In this paper, we propose a novel GCN-based aerodynamic design optimization acceleration framework, GCN-based aerodynamic design optimization acceleration framework. The framework significantly improves processing efficiency by optimizing data flow and data representation. We also introduce a network model called GCN4CFD that uses the GCF framework to create a compact data representation of the flow field and an encoder–decoder structure to extract features. This approach enables the model to learn underlying physical laws in a space-time efficient manner. We then evaluate the proposed method on an airfoil aerodynamic design optimization task and show that GCN4CFD provides a significant speedup compared to traditional CFD solvers while maintaining accuracy. Our experimental results demonstrate the robustness of the proposed framework and network model, achieving a speedup average of [Formula: see text].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李泽雄发布了新的文献求助10
刚刚
呵呵哒给呵呵哒的求助进行了留言
1秒前
2秒前
JggHoo发布了新的文献求助10
6秒前
风轻青柠完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
R2L23发布了新的文献求助10
12秒前
12秒前
诚心的扬发布了新的文献求助10
13秒前
14秒前
liupc2019完成签到,获得积分10
15秒前
顾矜应助momo采纳,获得10
16秒前
周em12_发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
FashionBoy应助ZZZ采纳,获得10
19秒前
21秒前
清爽傲云发布了新的文献求助10
23秒前
23秒前
25秒前
27秒前
嗨嗨害发布了新的文献求助10
27秒前
Eileen发布了新的文献求助10
28秒前
呵呵哒发布了新的文献求助10
31秒前
清爽傲云完成签到,获得积分10
33秒前
33秒前
34秒前
momo发布了新的文献求助10
38秒前
诚心的扬关注了科研通微信公众号
39秒前
41秒前
嗨嗨害完成签到,获得积分10
42秒前
吧啦吧啦完成签到,获得积分10
42秒前
43秒前
44秒前
zero完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158