计算机科学
加速
空气动力学
稳健性(进化)
人工神经网络
卷积神经网络
人工智能
翼型
并行计算
航空航天工程
生物化学
基因
工程类
化学
作者
Tiejun Li,Junjun Yan,Xinhai Chen,Zhichao Wang,Qingyang Zhang,Eric Zhou,Chunye Gong,Jie Liu
出处
期刊:International Journal of Modern Physics C
[World Scientific]
日期:2023-06-30
卷期号:35 (01)
标识
DOI:10.1142/s0129183124500074
摘要
Computational fluid dynamics (CFD) plays a critical role in many scientific and engineering applications, with aerodynamic design optimization being a primary area of interest. Recently, there has been much interest in using artificial intelligence approaches to accelerate this process. One promising method is the graph convolutional neural network (GCN), a deep learning method based on artificial neural networks (ANNs). In this paper, we propose a novel GCN-based aerodynamic design optimization acceleration framework, GCN-based aerodynamic design optimization acceleration framework. The framework significantly improves processing efficiency by optimizing data flow and data representation. We also introduce a network model called GCN4CFD that uses the GCF framework to create a compact data representation of the flow field and an encoder–decoder structure to extract features. This approach enables the model to learn underlying physical laws in a space-time efficient manner. We then evaluate the proposed method on an airfoil aerodynamic design optimization task and show that GCN4CFD provides a significant speedup compared to traditional CFD solvers while maintaining accuracy. Our experimental results demonstrate the robustness of the proposed framework and network model, achieving a speedup average of [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI