电化学发光
化学
适体
生物传感器
量子点
检出限
双模
基质(水族馆)
共振(粒子物理)
阴极
纳米技术
分析化学(期刊)
光电子学
材料科学
色谱法
物理
遗传学
工程类
航空航天工程
物理化学
地质学
生物化学
生物
海洋学
粒子物理学
作者
Yujie Han,Yu Du,Kun Xu,Xiang Ren,Guanhui Zhao,Zhuangzhuang Ru,Yue Jia,Qin Wei
标识
DOI:10.1021/acs.analchem.3c01285
摘要
Improving the sensitivity and accuracy of bioimmunoassays has been the focus of research into the development of electrochemiluminescence (ECL) sensing platforms, as this is a critical factor in their application to practical analysis. In this work, an electrochemiluminescence–electrochemistry (ECL–EC) dual-mode biosensing platform based on an “off–on–super on” signals pattern strategy was developed for the ultrasensitive detection of Microcystin-LR (MC-LR). In this system, sulfur quantum dots (SQDs) are a novel class of ECL cathode emitter with almost no potentially toxic effects. The sensing substrate is made from rGO/Ti3C2Tx composites, whose huge specific surface area greatly reduces the possibility of aggregation-caused quenching of SQDs. The ECL detection system was constructed based on the ECL-resonance energy transfer (ERET) strategy, where methylene blue (MB) with an ECL receptor function was bound to the aptamer of MC-LR by electrostatic adsorption and the center actual distance between the donor and the acceptor was calculated to be 3.84 nm, which was verified to be in accordance with the ERET theory. Meanwhile, the introduction of Ag+ as an ECL signal-amplifying molecule greatly improved the sensitivity of sensing analysis. Based on the specific binding of MC-LR to the aptamer, the concentration of MC-LR was found to have a positive correlation with the ECL signal. Also, EC detection was realized with the benefit of the excellent electrochemical properties of MB. The dual-mode biosensor greatly improves the confidence of the detection, examination areas of 0.001–100 pg/mL with MC-LR for ECL and EC were obtained, and the detection limits are 0.17 and 0.24 pg/mL, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI