Proton transport through nanoscale corrugations in two-dimensional crystals

石墨烯 材料科学 化学物理 质子 纳米尺度 单层 质子输运 膜曲率 离子 纳米技术 单晶硅 分子动力学 分子物理学 化学 计算化学 光电子学 物理 小泡 量子力学 有机化学 生物化学
作者
Oluwasegun J. Wahab,Enrico Daviddi,B. Xin,Pengzhan Sun,E. Griffin,Alex W. Colburn,D. Barry,M. Yagmurcukardes,F. M. Peeters,A. K. Geim,M. Lozada-Hidalgo,Patrick R. Unwin
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2305.04655
摘要

Defect-free graphene is impermeable to all atoms and ions at ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest of atoms. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium. On the other hand, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms. There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability or even on whether it requires defects in graphene's crystal lattice. Here using high resolution scanning electrochemical cell microscopy (SECCM), we show that, although proton permeation through mechanically-exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of 2D membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by SECCM reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through 2D crystals, mostly considered and modelled as flat, and suggest that strain and curvature can be used as additional degrees of freedom to control the proton permeability of 2D materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
刚刚
刚刚
刚刚
忘记时间发布了新的文献求助10
刚刚
Owen应助zlttt采纳,获得10
2秒前
2秒前
pig发布了新的文献求助10
2秒前
斯文思远发布了新的文献求助10
3秒前
3秒前
张雯思发布了新的文献求助10
4秒前
4秒前
11111发布了新的文献求助10
5秒前
山楂酱发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
执着从灵完成签到 ,获得积分10
9秒前
Villanellel完成签到,获得积分10
10秒前
田様应助gsq采纳,获得30
11秒前
13秒前
wenbin发布了新的文献求助10
14秒前
14秒前
飘逸蘑菇完成签到 ,获得积分10
14秒前
ccc发布了新的文献求助20
18秒前
18秒前
18秒前
19秒前
善学以致用应助TaoBijiang采纳,获得10
20秒前
科研通AI5应助热情的达采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
able发布了新的文献求助10
21秒前
淑文完成签到 ,获得积分20
22秒前
24秒前
天天快乐应助gj采纳,获得10
24秒前
昱珂完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
YYH完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173