Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 经济增长 结构工程 操作系统 图像(数学) 工程类
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJH完成签到,获得积分20
刚刚
1秒前
思源应助Keyl采纳,获得10
2秒前
万能图书馆应助故晨采纳,获得10
3秒前
3秒前
爆米花应助excellent采纳,获得10
3秒前
5秒前
6秒前
彬彬完成签到,获得积分10
6秒前
blank发布了新的文献求助10
7秒前
7秒前
8秒前
沈彬彬发布了新的文献求助10
9秒前
Rondab应助松松采纳,获得10
9秒前
akihi关注了科研通微信公众号
9秒前
18幺八发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
luhan完成签到,获得积分10
10秒前
10秒前
虎虎虎完成签到,获得积分10
11秒前
搜集达人应助幼汁汁鬼鬼采纳,获得10
11秒前
英姑应助康康采纳,获得10
12秒前
深水鱼完成签到,获得积分10
12秒前
YY完成签到 ,获得积分10
13秒前
黄黄发布了新的文献求助10
14秒前
excellent发布了新的文献求助10
14秒前
充电宝应助leez采纳,获得10
15秒前
assd发布了新的文献求助10
15秒前
963完成签到,获得积分10
15秒前
Wrasul完成签到 ,获得积分10
15秒前
16秒前
Lucas应助猫丫采纳,获得10
17秒前
隐形曼青应助温柔以冬采纳,获得10
17秒前
研友_VZG7GZ应助白日梦采纳,获得10
18秒前
氧化石墨烯完成签到,获得积分10
18秒前
18秒前
Sunnie完成签到,获得积分10
18秒前
blank完成签到,获得积分20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021