Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 经济增长 结构工程 操作系统 图像(数学) 工程类
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JF123_发布了新的文献求助10
刚刚
累啊发布了新的文献求助10
刚刚
刚刚
1秒前
Akim应助潇洒的竹杖采纳,获得10
1秒前
yuqiWang发布了新的文献求助10
1秒前
2秒前
3秒前
飞快的羊青完成签到,获得积分10
3秒前
七田皿完成签到,获得积分10
4秒前
单纯白梦发布了新的文献求助10
4秒前
4秒前
Heidi完成签到,获得积分10
5秒前
獵戶座的參宿四完成签到,获得积分10
5秒前
zhaoying完成签到,获得积分10
5秒前
SciGPT应助忐忑的尔容采纳,获得10
6秒前
一五发布了新的文献求助10
6秒前
6秒前
谭金钰发布了新的文献求助10
6秒前
7秒前
悦耳玲完成签到 ,获得积分10
7秒前
啦啦啦完成签到,获得积分10
7秒前
7秒前
zy发布了新的文献求助10
8秒前
翁忘幽完成签到,获得积分10
8秒前
觉得太贵发布了新的文献求助10
8秒前
累啊完成签到,获得积分10
8秒前
9秒前
5476发布了新的文献求助10
9秒前
9秒前
9秒前
天天快乐应助何小抽采纳,获得10
10秒前
浮浮世世发布了新的文献求助10
10秒前
周粥舟完成签到,获得积分10
10秒前
Orange应助zorro3574采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
圆锥香蕉应助科研通管家采纳,获得20
11秒前
科目三应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340709
求助须知:如何正确求助?哪些是违规求助? 4477046
关于积分的说明 13933849
捐赠科研通 4372955
什么是DOI,文献DOI怎么找? 2402666
邀请新用户注册赠送积分活动 1395551
关于科研通互助平台的介绍 1367628