Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 经济增长 结构工程 操作系统 图像(数学) 工程类
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
小小aa16完成签到,获得积分10
1秒前
小呆荣发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
幽默平安发布了新的文献求助10
4秒前
奋斗夏烟发布了新的文献求助10
6秒前
8秒前
ylh完成签到,获得积分10
10秒前
Owen应助幽默平安采纳,获得10
10秒前
乖猫要努力应助YJ888采纳,获得10
11秒前
11秒前
丘比特应助穆羊青采纳,获得10
12秒前
sasa完成签到,获得积分10
12秒前
sadascaqwqw发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
小宇子发布了新的文献求助10
15秒前
15秒前
锤子发布了新的文献求助25
16秒前
奋斗夏烟完成签到,获得积分10
16秒前
16秒前
zzrs发布了新的文献求助10
16秒前
Mo发布了新的文献求助10
18秒前
老大蒂亚戈应助YJ888采纳,获得10
18秒前
欣慰的水瑶完成签到,获得积分10
19秒前
momo发布了新的文献求助10
19秒前
21秒前
22秒前
李小宁发布了新的文献求助10
22秒前
LW完成签到,获得积分10
22秒前
23秒前
小李发布了新的文献求助10
24秒前
ysy完成签到,获得积分10
25秒前
25秒前
25秒前
嘻哈发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173