亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 经济增长 结构工程 操作系统 图像(数学) 工程类
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Hello应助坚定珩采纳,获得10
11秒前
12秒前
14秒前
Ccc完成签到,获得积分10
18秒前
不想学习完成签到,获得积分20
23秒前
23秒前
在水一方应助贪玩藏今采纳,获得10
28秒前
Tania完成签到,获得积分10
28秒前
ChaiHaobo发布了新的文献求助10
30秒前
Zoe完成签到,获得积分10
38秒前
贪玩藏今完成签到,获得积分20
40秒前
42秒前
50秒前
52秒前
57秒前
昧以欢发布了新的文献求助10
57秒前
wangdong完成签到,获得积分0
1分钟前
坚定珩发布了新的文献求助10
1分钟前
科研通AI6应助昧以欢采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
开朗满天发布了新的文献求助10
1分钟前
1分钟前
1分钟前
赘婿应助开朗满天采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI6应助SiboN采纳,获得10
2分钟前
2分钟前
2分钟前
六六完成签到 ,获得积分10
2分钟前
555完成签到,获得积分10
2分钟前
a涵发布了新的文献求助10
2分钟前
hfguwn完成签到,获得积分20
2分钟前
2分钟前
科研通AI6应助a涵采纳,获得10
2分钟前
Aaron完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470075
求助须知:如何正确求助?哪些是违规求助? 4573030
关于积分的说明 14337942
捐赠科研通 4499936
什么是DOI,文献DOI怎么找? 2465485
邀请新用户注册赠送积分活动 1453834
关于科研通互助平台的介绍 1428409