Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 结构工程 工程类 图像(数学) 经济增长 操作系统
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的南珍完成签到 ,获得积分20
刚刚
1秒前
2秒前
林森发布了新的文献求助10
4秒前
4秒前
那里有颗星星完成签到,获得积分10
4秒前
丙队长完成签到,获得积分10
5秒前
酷炫蚂蚁完成签到,获得积分20
6秒前
6秒前
科研通AI5应助叶子采纳,获得10
6秒前
感激不尽完成签到,获得积分10
6秒前
wuyudelan完成签到,获得积分10
7秒前
zstyry9998完成签到,获得积分10
9秒前
RH发布了新的文献求助10
9秒前
冷傲迎梦发布了新的文献求助10
9秒前
11秒前
weiv完成签到,获得积分10
13秒前
Teslwang完成签到,获得积分10
13秒前
13秒前
13秒前
zhangzhen发布了新的文献求助10
13秒前
英姑应助彬彬采纳,获得10
14秒前
传奇3应助maomao采纳,获得10
16秒前
稀罕你发布了新的文献求助10
17秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
17秒前
naonao完成签到,获得积分20
17秒前
摆烂的实验室打工人完成签到,获得积分10
17秒前
Jenny发布了新的文献求助50
19秒前
20秒前
hehe完成签到,获得积分20
20秒前
naonao发布了新的文献求助10
21秒前
Glufo完成签到,获得积分10
21秒前
22秒前
qqqqqq发布了新的文献求助10
23秒前
忘羡222发布了新的文献求助30
23秒前
紫菜发布了新的文献求助10
25秒前
29秒前
29秒前
独特亦旋完成签到,获得积分20
30秒前
今后应助qqqqqq采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824