Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 链接(几何体) 数据挖掘 人工智能 理论计算机科学 经济 计算机网络 工程类 图像(数学) 操作系统 结构工程 经济增长
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:183: 121934-121934 被引量:48
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助三三采纳,获得10
刚刚
顺利又菱发布了新的文献求助10
刚刚
1秒前
雨中雨翼发布了新的文献求助10
1秒前
良良丸发布了新的文献求助10
2秒前
2秒前
学术小白完成签到,获得积分20
2秒前
搜集达人应助宁静致远采纳,获得10
4秒前
4秒前
4秒前
王旺完成签到,获得积分10
5秒前
jkhjkhj发布了新的文献求助10
5秒前
努力学习的阿文完成签到 ,获得积分10
5秒前
xiongwenlei发布了新的文献求助10
6秒前
whatever应助清晨仪仪采纳,获得20
6秒前
6秒前
ajiang完成签到,获得积分10
7秒前
pppsci完成签到,获得积分10
8秒前
专注的问寒应助墨菲采纳,获得20
10秒前
11秒前
11秒前
慕青应助猛犸象冲冲冲采纳,获得10
12秒前
Akim应助王凡渡采纳,获得10
13秒前
999z完成签到,获得积分10
13秒前
David完成签到,获得积分10
13秒前
刘辞忧完成签到,获得积分10
13秒前
13秒前
自然画笔关注了科研通微信公众号
13秒前
13秒前
14秒前
ding应助研友采纳,获得10
14秒前
15秒前
15秒前
余喆完成签到,获得积分10
16秒前
Sandy11完成签到,获得积分10
16秒前
李健应助木小叶采纳,获得10
16秒前
17秒前
李爱国应助刘66666采纳,获得10
17秒前
连衣裙完成签到,获得积分10
17秒前
难过的谷芹应助南笙几梦采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478