清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Highly accurate prediction of viscosity of epoxy resin and diluent at various temperatures utilizing machine learning

环氧树脂 粘度 缩水甘油醚 稀释剂 材料科学 计算机科学 双酚A 胶粘剂 生物系统 复合材料 工艺工程 算法 有机化学 化学 生物 工程类 图层(电子)
作者
Haoke Qiu,Wanchen Zhao,Hanwen Pei,Junpeng Li,Zhao‐Yan Sun
出处
期刊:Polymer [Elsevier BV]
卷期号:256: 125216-125216 被引量:11
标识
DOI:10.1016/j.polymer.2022.125216
摘要

Obtaining quantitative structure-property relationships (QSPR) is crucial for the development of new materials, which also helps to reduce the number of trial and improve the efficiency for both research and development. The viscosity of epoxy resin is vital for processing and application, for example, low viscosity can be used as coatings while high viscosity as adhesives. However, due to the wide variety of epoxy resin and its additives, the resin with target viscosities cannot be easily designed and the viscosity cannot be precisely predicted directly from massive formulation of epoxy resin. In the present work, we propose a simple strategy to accurately predict the viscosity of epoxy resin for a wide range of epoxy resins leveraging machine learning (ML) and deep learning (DL). The coarse-grained (CG) methodology is applied to the dataset first and then the dataset is categorized via K-Means clustering algorithm. A high-precision prediction is thus achieved with R2 up to 1.00 among 10 of the classes on train sets. To build a more generalized model without clustering, we compare 5 ML and DL models to select the optimal model under multidimensional evaluations. A prediction model with R2 of 0.96 on the test set is obtained using TensorFlow framework. We further employ our model to predict the viscosity of a commonly used diglycidyl ether of bisphenol-A (DGEBA) epoxy with different diluent proportions at different temperatures, and then we verify the predicted data by using several empirical viscosity equations. As a consequence, the activation energy of DGEBA can be estimated from the relation between viscosity and temperature, and the calculated value (56.40 kJ-mol−1) agrees well with the experimental data (58.16 kJ-mol−1). Our work reveals the great potential of machine learning methods in the prediction of QSPR in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
bellapp完成签到 ,获得积分10
31秒前
31秒前
Liufgui应助Fern采纳,获得30
34秒前
37秒前
44秒前
46秒前
DSUNNY完成签到 ,获得积分10
55秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
南苏发布了新的文献求助10
1分钟前
1分钟前
WenJun完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助水天一色采纳,获得10
1分钟前
南苏完成签到 ,获得积分20
1分钟前
村口的帅老头完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
水天一色完成签到,获得积分10
2分钟前
www258357完成签到,获得积分10
2分钟前
2分钟前
水天一色发布了新的文献求助10
2分钟前
Alisha完成签到,获得积分10
2分钟前
naczx完成签到,获得积分0
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Liufgui应助乏味采纳,获得10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
光亮静槐完成签到 ,获得积分10
3分钟前
Fern发布了新的文献求助30
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983