Highly accurate prediction of viscosity of epoxy resin and diluent at various temperatures utilizing machine learning

环氧树脂 粘度 缩水甘油醚 稀释剂 材料科学 计算机科学 双酚A 胶粘剂 生物系统 复合材料 工艺工程 算法 有机化学 化学 工程类 生物 图层(电子)
作者
Haoke Qiu,Wanchen Zhao,Hanwen Pei,Junpeng Li,Zhao‐Yan Sun
出处
期刊:Polymer [Elsevier]
卷期号:256: 125216-125216 被引量:11
标识
DOI:10.1016/j.polymer.2022.125216
摘要

Obtaining quantitative structure-property relationships (QSPR) is crucial for the development of new materials, which also helps to reduce the number of trial and improve the efficiency for both research and development. The viscosity of epoxy resin is vital for processing and application, for example, low viscosity can be used as coatings while high viscosity as adhesives. However, due to the wide variety of epoxy resin and its additives, the resin with target viscosities cannot be easily designed and the viscosity cannot be precisely predicted directly from massive formulation of epoxy resin. In the present work, we propose a simple strategy to accurately predict the viscosity of epoxy resin for a wide range of epoxy resins leveraging machine learning (ML) and deep learning (DL). The coarse-grained (CG) methodology is applied to the dataset first and then the dataset is categorized via K-Means clustering algorithm. A high-precision prediction is thus achieved with R2 up to 1.00 among 10 of the classes on train sets. To build a more generalized model without clustering, we compare 5 ML and DL models to select the optimal model under multidimensional evaluations. A prediction model with R2 of 0.96 on the test set is obtained using TensorFlow framework. We further employ our model to predict the viscosity of a commonly used diglycidyl ether of bisphenol-A (DGEBA) epoxy with different diluent proportions at different temperatures, and then we verify the predicted data by using several empirical viscosity equations. As a consequence, the activation energy of DGEBA can be estimated from the relation between viscosity and temperature, and the calculated value (56.40 kJ-mol−1) agrees well with the experimental data (58.16 kJ-mol−1). Our work reveals the great potential of machine learning methods in the prediction of QSPR in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿元发布了新的文献求助10
4秒前
linfordlu完成签到,获得积分0
5秒前
AireenBeryl531完成签到,获得积分0
8秒前
科研小白完成签到 ,获得积分10
14秒前
ttt完成签到,获得积分10
15秒前
爱吃萝卜的Bob完成签到,获得积分10
17秒前
giao完成签到,获得积分10
20秒前
abc完成签到 ,获得积分10
25秒前
ffyzsl完成签到,获得积分10
27秒前
小李叭叭完成签到,获得积分10
35秒前
CHyaa完成签到,获得积分10
37秒前
拉塞尔....完成签到 ,获得积分10
38秒前
strive完成签到 ,获得积分10
40秒前
幽若宝宝完成签到,获得积分10
40秒前
大萱完成签到 ,获得积分10
41秒前
夷陵老祖胃无限完成签到,获得积分10
45秒前
飞竹天寻完成签到,获得积分20
45秒前
阿咚完成签到,获得积分10
47秒前
seedcui完成签到,获得积分10
48秒前
不吃辣活不了完成签到 ,获得积分10
49秒前
嗯哼完成签到,获得积分10
54秒前
55秒前
Liar应助科研通管家采纳,获得10
55秒前
传奇3应助科研通管家采纳,获得10
55秒前
彭于晏应助科研通管家采纳,获得10
55秒前
Clover04应助科研通管家采纳,获得10
55秒前
55秒前
FashionBoy应助科研通管家采纳,获得10
55秒前
Liar应助科研通管家采纳,获得10
55秒前
bkagyin应助科研通管家采纳,获得10
55秒前
大模型应助科研通管家采纳,获得20
55秒前
55秒前
传奇3应助科研通管家采纳,获得10
55秒前
56秒前
嗯哼发布了新的文献求助10
59秒前
bkagyin应助我爱科研研研研采纳,获得10
1分钟前
111完成签到,获得积分10
1分钟前
和谐的映梦完成签到,获得积分10
1分钟前
Tao完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176