Highly accurate prediction of viscosity of epoxy resin and diluent at various temperatures utilizing machine learning

环氧树脂 粘度 缩水甘油醚 稀释剂 材料科学 计算机科学 双酚A 胶粘剂 生物系统 复合材料 工艺工程 算法 有机化学 化学 工程类 生物 图层(电子)
作者
Haoke Qiu,Wanchen Zhao,Hanwen Pei,Junpeng Li,Zhao‐Yan Sun
出处
期刊:Polymer [Elsevier]
卷期号:256: 125216-125216 被引量:20
标识
DOI:10.1016/j.polymer.2022.125216
摘要

Obtaining quantitative structure-property relationships (QSPR) is crucial for the development of new materials, which also helps to reduce the number of trial and improve the efficiency for both research and development. The viscosity of epoxy resin is vital for processing and application, for example, low viscosity can be used as coatings while high viscosity as adhesives. However, due to the wide variety of epoxy resin and its additives, the resin with target viscosities cannot be easily designed and the viscosity cannot be precisely predicted directly from massive formulation of epoxy resin. In the present work, we propose a simple strategy to accurately predict the viscosity of epoxy resin for a wide range of epoxy resins leveraging machine learning (ML) and deep learning (DL). The coarse-grained (CG) methodology is applied to the dataset first and then the dataset is categorized via K-Means clustering algorithm. A high-precision prediction is thus achieved with R2 up to 1.00 among 10 of the classes on train sets. To build a more generalized model without clustering, we compare 5 ML and DL models to select the optimal model under multidimensional evaluations. A prediction model with R2 of 0.96 on the test set is obtained using TensorFlow framework. We further employ our model to predict the viscosity of a commonly used diglycidyl ether of bisphenol-A (DGEBA) epoxy with different diluent proportions at different temperatures, and then we verify the predicted data by using several empirical viscosity equations. As a consequence, the activation energy of DGEBA can be estimated from the relation between viscosity and temperature, and the calculated value (56.40 kJ-mol−1) agrees well with the experimental data (58.16 kJ-mol−1). Our work reveals the great potential of machine learning methods in the prediction of QSPR in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助guo采纳,获得10
刚刚
1秒前
科研通AI6应助ayintree采纳,获得10
1秒前
可爱的函函应助ayintree采纳,获得10
1秒前
momo完成签到,获得积分10
1秒前
于瑜与余完成签到,获得积分10
2秒前
yaoeer发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
是个宝耶完成签到 ,获得积分10
3秒前
慕青应助优秀的大璇采纳,获得10
4秒前
牛牛完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
FrankJeffison发布了新的文献求助10
4秒前
niNe3YUE应助Waley采纳,获得20
5秒前
欢喜的祥发布了新的文献求助20
5秒前
5秒前
5秒前
熊黛林应助端庄的寄凡采纳,获得10
6秒前
无极微光应助端庄的寄凡采纳,获得20
6秒前
11发布了新的文献求助10
6秒前
7秒前
哲别发布了新的文献求助10
7秒前
8秒前
上官若男应助limyao采纳,获得10
8秒前
Steve发布了新的文献求助10
8秒前
熊黛林完成签到,获得积分10
8秒前
wulififi发布了新的文献求助10
10秒前
xiuxiuzhang发布了新的文献求助10
12秒前
可爱的小朋友完成签到,获得积分10
13秒前
FashionBoy应助shenhongru采纳,获得10
13秒前
QQQ完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
斯文败类应助WEAWEA采纳,获得10
17秒前
17秒前
18秒前
科研通AI2S应助如意的冰双采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233