Large Model Era: Deep Learning in Osteoporosis Drug Discovery

药物发现 骨质疏松症 深度学习 计算机科学 人工智能 医学 传统医学 数据科学 生物信息学 内科学 生物
作者
Junlin Xu,Xiaobo Wen,Li Sun,Kunyue Xing,Linyuan Xue,S. Zhou,Jiayi Hu,Zhi Yong Ai,Qian Kong,Wen Zhang,Hongjun Li,Minglu Hao,Dongming Xing
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02264
摘要

Osteoporosis is a systemic microstructural degradation of bone tissue, often accompanied by fractures, pain, and other complications, resulting in a decline in patients' life quality. In response to the increased incidence of osteoporosis, related drug discovery has attracted more and more attention, but it is often faced with challenges due to long development cycle and high cost. Deep learning with powerful data processing capabilities has shown significant advantages in the field of drug discovery. With the development of technology, it is more and more applied to all stages of drug discovery. In particular, large models, which have been developed rapidly recently, provide new methods for understanding disease mechanisms and promoting drug discovery because of their large parameters and ability to deal with complex tasks. This review introduces the traditional models and large models in the deep learning domain, systematically summarizes their applications in each stage of drug discovery, and analyzes their application prospect in osteoporosis drug discovery. Finally, the advantages and limitations of large models are discussed in depth, in order to help future drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LegendThree关注了科研通微信公众号
刚刚
wfrg完成签到,获得积分10
刚刚
刚刚
机灵飞兰完成签到,获得积分10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI2S应助doc采纳,获得10
2秒前
3秒前
不爱吃西葫芦完成签到 ,获得积分10
3秒前
3秒前
Jiabao发布了新的文献求助10
3秒前
3秒前
rainny发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
sunyu发布了新的文献求助10
6秒前
7秒前
领导范儿应助小白采纳,获得30
7秒前
灵巧糜发布了新的文献求助10
7秒前
凯凯完成签到,获得积分10
7秒前
miaomiao完成签到,获得积分10
8秒前
HLT关闭了HLT文献求助
8秒前
9秒前
keerlife完成签到,获得积分10
9秒前
爱吃西瓜发布了新的文献求助10
9秒前
试尝胆大完成签到,获得积分10
9秒前
flyxga870825发布了新的文献求助10
10秒前
大模型应助天真的煎饼采纳,获得10
11秒前
LJ程励发布了新的文献求助10
11秒前
Lin发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445