Deep learning–based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia

神经血管束 医学 三叉神经痛 分割 三叉神经 磁共振成像 深度学习 体素 Sørensen–骰子系数 解剖 放射科 人工智能 图像分割 计算机科学 外科
作者
Kyra Halbert-Elliott,Michael E. Xie,Bryan C. Dong,Oishika Das,Xihang Wang,Christopher M. Jackson,Michael Lim,Judy Huang,Vivek Yedavalli,Chetan Bettegowda,Risheng Xu
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-9
标识
DOI:10.3171/2024.10.jns241060
摘要

OBJECTIVE Preoperative workup of trigeminal neuralgia (TN) consists of identification of neurovascular features on MRI. In this study, the authors apply and evaluate the performance of deep learning models for segmentation of the trigeminal nerve and surrounding vasculature to quantify anatomical features of the nerve and vessels. METHODS Six U-Net–based neural networks, each with a different encoder backbone, were trained to label constructive interference in steady-state MRI voxels as nerve, vasculature, or background. A retrospective dataset of 50 TN patients at the authors’ institution who underwent preoperative high-resolution MRI in 2022 was utilized to train and test the models. Performance was measured by the Dice coefficient and intersection over union (IoU) metrics. Anatomical characteristics, such as surface area of neurovascular contact and distance to the contact point, were computed and compared between the predicted and ground truth segmentations. RESULTS Of the evaluated models, the best performing was U-Net with an SE-ResNet50 backbone (Dice score = 0.775 ± 0.015, IoU score = 0.681 ± 0.015). When the SE-ResNet50 backbone was used, the average surface area of neurovascular contact in the testing dataset was 6.90 mm 2 , which was not significantly different from the surface area calculated from manual segmentation (p = 0.83). The average calculated distance from the brainstem to the contact point was 4.34 mm, which was also not significantly different from manual segmentation (p = 0.29). CONCLUSIONS U-Net–based neural networks perform well for segmenting trigeminal nerve and vessels from preoperative MRI volumes. This technology enables the development of quantitative and objective metrics for radiographic evaluation of TN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诺一44发布了新的文献求助10
1秒前
1秒前
烟花应助伊洛采纳,获得10
1秒前
旺旺发布了新的文献求助10
1秒前
2秒前
充电宝应助欣喜眼神采纳,获得10
3秒前
lulu完成签到,获得积分10
3秒前
尛瞐慶成发布了新的文献求助10
4秒前
aprise发布了新的文献求助10
4秒前
lling发布了新的文献求助10
7秒前
8秒前
9秒前
乐乐应助ryan采纳,获得10
9秒前
清爽的孤萍完成签到 ,获得积分10
11秒前
外向翠萱完成签到,获得积分10
12秒前
大个应助yaoo采纳,获得10
14秒前
今后应助sdl采纳,获得10
14秒前
星辰大海应助醉波采纳,获得10
14秒前
Summer完成签到,获得积分10
14秒前
温暖哈密瓜完成签到 ,获得积分10
15秒前
17秒前
18秒前
ding应助看不了一点文献采纳,获得10
18秒前
Orange应助第八号当铺采纳,获得10
19秒前
霸气靖雁发布了新的文献求助10
20秒前
可爱的凛发布了新的文献求助10
20秒前
21秒前
小马甲应助小余同学采纳,获得10
21秒前
慕青应助Hang采纳,获得10
21秒前
小鱼儿完成签到 ,获得积分10
21秒前
HalfGumps完成签到,获得积分10
22秒前
wyq发布了新的文献求助10
22秒前
23秒前
24秒前
北海未暖完成签到,获得积分10
24秒前
25秒前
25秒前
27秒前
迷路盼易完成签到 ,获得积分10
27秒前
傅三毒发布了新的文献求助10
28秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3722486
求助须知:如何正确求助?哪些是违规求助? 3268234
关于积分的说明 9954007
捐赠科研通 2982589
什么是DOI,文献DOI怎么找? 1636014
邀请新用户注册赠送积分活动 776760
科研通“疑难数据库(出版商)”最低求助积分说明 746569