Protective role of mitophagy on microglia-mediated neuroinflammatory injury through mtDNA-STING signaling in manganese-induced parkinsonism

粒体自噬 小胶质细胞 神经炎症 帕金森病 自噬 神经学 神经科学 医学 细胞生物学 炎症 生物 免疫学 细胞凋亡 遗传学 内科学 疾病 工程类 航空航天工程
作者
Lu Yang,Liang Gao,Yuqing Yang,D. L. Shi,Zhipeng Zhang,Xiaobai Wang,Ying Huang,Jie Wu,Jia Meng,Hong Li,Dongying Yan
出处
期刊:Journal of Neuroinflammation [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12974-025-03396-5
摘要

Manganese (Mn), the third most abundant transition metal in the earth's crust, has widespread applications in the emerging field of organometallic catalysis and traditional industries. Excessive Mn exposure causes neurological syndrome resembling Parkinson's disease (PD). The pathogenesis of PD is thought to involve microglia-mediated neuroinflammatory injury, with mitochondrial dysfunction playing a role in aberrant microglial activation. In the early stages of PD, PINK1/Parkin-mediated mitophagy contributes to the microglial inflammatory response via the cGAS/STING signaling pathway. Suppression of PINK1/Parkin-mediated mitophagy due to excessive Mn exposure exacerbates neuronal injury. Moreover, excessive Mn exposure leads to neuroinflammatory damage via the microglial cGAS-STING pathway. However, the precise role of microglial mitophagy in modulating neuroinflammation in Mn-induced parkinsonism and its underlying molecular mechanism remains unclear. Here, we observed that Mn-exposed mice exhibited neurobehavioral abnormalities and detrimental microglial activation, along with increased apoptosis of nerve cells, proinflammatory cytokines, and intracellular ROS. Furthermore, in vivo and in vitro experiments showed that excessive Mn exposure resulted in microglial mitochondrial dysfunction, manifested by increased mitochondrial ROS, decreased mitochondrial mass, and membrane potential. Additionally, with the escalating Mn dose, PINK1/Parkin-mediated mitophagy changed from activation to suppression. This was evidenced by decreased levels of LC3-II, PINK1, p-Parkin/Parkin, and increased levels of p62 protein expression level, as well as the colocalization between ATPB and LC3B due to excessive Mn exposure. Upregulation of mitophagy by urolithin A could mitigate Mn-induced mitochondrial dysfunction, as indicated by decreased mitochondrial ROS, increased mitochondrial mass, and membrane potential, along with improvements in neurobehavioral deficits and attenuated detrimental microglial activation. Using single-nucleus RNA-sequencing (snRNA-seq) analysis in the Mn-exposed mouse model, we identified the microglial cGAS-STING signaling pathway as a potential mechanism underlying Mn-induced neuroinflammation. This pathway is associated with an increase in cytosolic mtDNA levels, which activate STING signaling. These findings point to the induction of microglial mitophagy as a viable strategy to alleviate Mn-induced neuroinflammation through mtDNA-STING signaling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狐狸完成签到,获得积分10
1秒前
HOPE发布了新的文献求助10
1秒前
1秒前
上官若男应助siwen采纳,获得10
1秒前
啦啦啦完成签到 ,获得积分10
2秒前
磊磊猪完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
虚幻星辰发布了新的文献求助10
4秒前
AAA发布了新的文献求助10
4秒前
白betty完成签到,获得积分10
5秒前
alaxs完成签到,获得积分20
5秒前
Orange应助赵狗儿采纳,获得10
6秒前
ting发布了新的文献求助10
6秒前
6秒前
Lucas应助心魔采纳,获得10
6秒前
7秒前
深情千雁完成签到,获得积分10
7秒前
8秒前
开心就吃猕猴桃完成签到,获得积分10
8秒前
感性的夜玉完成签到,获得积分10
8秒前
南瓜豆腐完成签到 ,获得积分10
9秒前
00发布了新的文献求助10
9秒前
liu完成签到,获得积分20
10秒前
赘婿应助跳跃的问玉采纳,获得10
11秒前
丘比特应助chikaoyu采纳,获得10
11秒前
舒适灵完成签到,获得积分10
11秒前
昔年完成签到 ,获得积分10
11秒前
yide发布了新的文献求助10
11秒前
12秒前
Stephen完成签到,获得积分10
12秒前
LL发布了新的文献求助10
12秒前
魔真人发布了新的文献求助10
12秒前
甜甜秋荷发布了新的文献求助10
13秒前
13秒前
匆匆完成签到 ,获得积分10
14秒前
hubo发布了新的文献求助10
14秒前
酷波er应助阿湫采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773986
求助须知:如何正确求助?哪些是违规求助? 3319662
关于积分的说明 10196165
捐赠科研通 3034281
什么是DOI,文献DOI怎么找? 1664956
邀请新用户注册赠送积分活动 796429
科研通“疑难数据库(出版商)”最低求助积分说明 757464