催化作用
电解质
电化学
接口(物质)
化学物理
材料科学
领域(数学)
Atom(片上系统)
化学工程
纳米技术
化学
电极
物理化学
分子
有机化学
计算机科学
吉布斯等温线
数学
纯数学
工程类
嵌入式系统
作者
Xiaotao Zhang,Jiao Chen,Hongyan Wang,Yongliang Tang,Yuan Ping Feng,Yuanzheng Chen,Zhongfang Chen
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-04-07
标识
DOI:10.1021/acs.nanolett.5c01245
摘要
Dynamic catalytic structures at the catalyst-electrolyte interface pose significant challenges in accurately identifying active sites and establishing precise structure-activity relationships essential for catalyst design and performance optimization. Herein, we unveil the dynamic structural evolution of Cu-N-C single-atom catalysts (SACs) under electrochemical conditions, elucidating the critical role of the electrochemical coupled field. Using hybrid-solvation constant potential simulations, we identify that the unique dx2-y2 orbital occupancy at the Fermi level, stemming from copper's d9 electronic configuration, renders Cu-N bonds highly sensitive to external voltage. Proton transfer (PT) triggers electronic reordering that converts discrete energy levels into continuous states near the Fermi level, enhancing charge accumulation in the Cu-N antibonding state. Consequently, the Cu-N bonds are weakened, ultimately leading to copper atom leaching. Our work provides a fundamental understanding of SACs' dynamics under realistic electrochemical environments, offering new insights for the rational design of robust electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI