RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model

基础(证据) 变更检测 萃取(化学) 遥感 计算机科学 图像(数学) 计算机视觉 人工智能 地质学 地理 化学 考古 色谱法
作者
Mingze Wang,Keyan Chen,Lili Su,Cilin Yan,Sheng Xu,Haotian Zhang,Pengcheng Yuan,Xiaolong Jiang,Baochang Zhang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.07564
摘要

The intelligent interpretation of buildings plays a significant role in urban planning and management, macroeconomic analysis, population dynamics, etc. Remote sensing image building interpretation primarily encompasses building extraction and change detection. However, current methodologies often treat these two tasks as separate entities, thereby failing to leverage shared knowledge. Moreover, the complexity and diversity of remote sensing image scenes pose additional challenges, as most algorithms are designed to model individual small datasets, thus lacking cross-scene generalization. In this paper, we propose a comprehensive remote sensing image building understanding model, termed RSBuilding, developed from the perspective of the foundation model. RSBuilding is designed to enhance cross-scene generalization and task universality. Specifically, we extract image features based on the prior knowledge of the foundation model and devise a multi-level feature sampler to augment scale information. To unify task representation and integrate image spatiotemporal clues, we introduce a cross-attention decoder with task prompts. Addressing the current shortage of datasets that incorporate annotations for both tasks, we have developed a federated training strategy to facilitate smooth model convergence even when supervision for some tasks is missing, thereby bolstering the complementarity of different tasks. Our model was trained on a dataset comprising up to 245,000 images and validated on multiple building extraction and change detection datasets. The experimental results substantiate that RSBuilding can concurrently handle two structurally distinct tasks and exhibits robust zero-shot generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助jdwkhevb采纳,获得10
1秒前
哈哈完成签到,获得积分10
1秒前
KINA发布了新的文献求助10
2秒前
迟大猫应助PPkk采纳,获得30
2秒前
苹果惜梦发布了新的文献求助10
2秒前
傲娇以寒完成签到,获得积分10
3秒前
xybc完成签到,获得积分10
3秒前
3秒前
欢呼万宝路完成签到,获得积分20
4秒前
4秒前
wawaeryu完成签到,获得积分10
5秒前
hhhhh完成签到,获得积分10
6秒前
6秒前
大鲟完成签到,获得积分10
7秒前
星辰大海应助zyx采纳,获得10
7秒前
小蘑菇应助高木同学采纳,获得10
7秒前
Yongander完成签到,获得积分10
8秒前
8秒前
舒服的曼云完成签到,获得积分10
9秒前
Starry发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
自觉的月亮完成签到,获得积分10
11秒前
YC发布了新的文献求助10
12秒前
太白金鑫发布了新的文献求助30
12秒前
徐凤年aaa发布了新的文献求助10
13秒前
13秒前
科目三应助沧海一粟采纳,获得10
14秒前
rony发布了新的文献求助10
14秒前
yyy发布了新的文献求助10
15秒前
16秒前
LAVINE完成签到 ,获得积分10
17秒前
科目三应助xsf采纳,获得10
17秒前
阳光完成签到,获得积分10
17秒前
4kerzz发布了新的文献求助10
18秒前
18秒前
科研通AI5应助研友_VZGvVn采纳,获得10
18秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831