Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions

衰老 肺癌 端粒 癌症 腺癌 医学 DNA损伤 癌症研究 生物 肿瘤科 内科学 遗传学 DNA
作者
Saurav Kumar Jha,Gabriele De Rubis,Shankar Raj Devkota,Yali Zhang,Radhika Adhikari,Laxmi Akhileshwar Jha,Kunal Bhattacharya,Samir Mehndiratta,Gaurav Gupta,Sachin Kumar Singh,Nisha Panth,Kamal Dua,Philip M. Hansbro,Keshav Raj Paudel
出处
期刊:Ageing Research Reviews [Elsevier BV]
卷期号:97: 102315-102315 被引量:36
标识
DOI:10.1016/j.arr.2024.102315
摘要

Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80–85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
斯文败类应助Archer采纳,获得10
1秒前
1397完成签到 ,获得积分10
1秒前
1秒前
自觉的镜子完成签到 ,获得积分10
1秒前
Cici完成签到,获得积分10
2秒前
林森发布了新的文献求助10
2秒前
2秒前
精明一寡发布了新的文献求助10
3秒前
3秒前
4秒前
深情安青应助哟252采纳,获得10
4秒前
4秒前
啊吖吖吖吖吖完成签到,获得积分10
5秒前
SciGPT应助Archer采纳,获得10
5秒前
Abiy发布了新的文献求助10
5秒前
十二应助CDCYANG采纳,获得10
5秒前
6秒前
7秒前
cloudmeadow发布了新的文献求助10
8秒前
LuoYR@SZU发布了新的文献求助10
8秒前
8秒前
8秒前
ssherry发布了新的文献求助10
8秒前
刘枫其发布了新的文献求助10
8秒前
9秒前
霸气幼荷发布了新的文献求助10
9秒前
9秒前
维尼发布了新的文献求助10
9秒前
Ellery完成签到,获得积分10
10秒前
zulpikar发布了新的文献求助10
11秒前
ma发布了新的文献求助10
12秒前
12秒前
陶醉的钢笔完成签到 ,获得积分10
13秒前
严婉蓉发布了新的文献求助10
13秒前
choiyxh发布了新的文献求助10
13秒前
13秒前
14秒前
陈进发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142