DKVMN-KAPS: Dynamic Key-Value Memory Networks Knowledge Tracing With Students’ Knowledge-Absorption Ability and Problem-Solving Ability

计算机科学 追踪 钥匙(锁) 知识抽取 答疑 人工智能 机器学习 计算机安全 操作系统
作者
Wei Zhang,Zhongwei Gong,Peihua Luo,Zhixin Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 55146-55156
标识
DOI:10.1109/access.2024.3388718
摘要

Knowledge tracing aims to predict students' future question-answering performance based on their historical question-answering records, but the current mainstream knowledge tracing model ignores the individual differences in different students' knowledge-absorption and problem-solving abilities, which leads to a poor prediction of students' question-answering performance by the model. To solve this, Dynamic Key-Value Memory Networks Knowledge Tracing with Students' Knowledge-Absorption Ability and Problem-Solving Ability (DKVMN-KAPS) is proposed in this paper. Firstly, a hierarchical convolutional neural network is used to consider students' knowledge mastery at multiple time steps, and then quantify students' knowledge-absorption ability, aiming to more accurately portray students' knowledge states; secondly, an autoencoder is used to dynamically update students' problem-solving ability at each time step; and finally, students' question answering performance is predicted by considering the students' knowledge state, problem-solving ability, and question features. Extensive experiments on three datasets show that the prediction performance of DKVMN-KAPS outperforms existing models and improves the prediction accuracy of deep knowledge tracing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztt27999发布了新的文献求助10
刚刚
Ding-Ding完成签到,获得积分10
2秒前
小七完成签到,获得积分10
2秒前
李爱国应助Niuma采纳,获得10
3秒前
5秒前
香蕉觅云应助Wangnono采纳,获得10
7秒前
8秒前
hwezhu发布了新的文献求助10
10秒前
慕青应助自由的机器猫采纳,获得10
10秒前
ccc完成签到 ,获得积分10
11秒前
12秒前
feizao完成签到,获得积分10
12秒前
ztt27999完成签到,获得积分10
14秒前
14秒前
Wangnono完成签到,获得积分10
15秒前
一点完成签到 ,获得积分10
16秒前
丸子鱼完成签到 ,获得积分10
19秒前
20秒前
21秒前
Lucas应助GU采纳,获得10
21秒前
yydssss完成签到,获得积分10
21秒前
阿文发布了新的文献求助10
23秒前
24秒前
24秒前
Lion完成签到,获得积分10
26秒前
26秒前
30秒前
快乐寄风发布了新的文献求助10
31秒前
33秒前
37秒前
风趣尔琴完成签到,获得积分10
38秒前
自由的机器猫完成签到,获得积分10
43秒前
Singularity发布了新的文献求助10
44秒前
小王发布了新的文献求助10
44秒前
后山种仙草完成签到,获得积分10
45秒前
zzr元亨利贞完成签到,获得积分10
51秒前
小王完成签到,获得积分10
52秒前
寒崽完成签到 ,获得积分10
54秒前
55秒前
57秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079