Privacy-security oriented chaotic compressed sensing data collection in edge-assisted mobile crowd sensing

计算机科学 加密 上传 散列函数 数据收集 GSM演进的增强数据速率 数据完整性 压缩传感 数据安全 哈希表 密码学 实时计算 计算机网络 计算机安全 算法 电信 操作系统 统计 数学
作者
Yanming Fu,Bocheng Huang,Lin Li,Jiayuan Chen,Wei Wei
出处
期刊:Ad hoc networks [Elsevier]
卷期号:160: 103507-103507 被引量:1
标识
DOI:10.1016/j.adhoc.2024.103507
摘要

As a data-centric network, the Mobile Crowd Sensing (MCS) collects and uploads sensing data through intelligent terminal devices carried by workers. However, due to resource limitations, the confidentiality, integrity and communication cost issues of sensing data have not been well coordinated and resolved in the actual MCS data collection process. In this regard, this paper proposes an edge computing-assisted MCS Chaotic Compressed Sensing Secure Data Collection scheme (CCS-SDC), which supports the secure collection of sensing data and saves communication cost. In CCS-SDC, workers first use the encryption algorithm based on chaos theory to encrypt the collected sensing data, and then adopt the hash location algorithm based on chaos theory to calculate the corresponding hash verification code of the sensing data. After receiving the encrypted sensing data transmitted by the worker, the edge server recomputes the hash verification code of the encrypted sensing data and verifies the integrity of the data, which can locate the changed sensing task data to a certain extent. Then the sensing data is compressed and sampled based on the generated chaos measurement matrix to reduce the amount of data transmission and further enhance the confidentiality of the sensing data. In addition, the same hash positioning algorithm is used between the edge server and the sensing platform to protect data integrity. For the changed data located by integrity verification, in addition to choosing to let workers re-sense and submit, the sensing platform can also choose to discard the changed sensing data under appropriate circumstances, and still reconstruct and decrypt the remaining data through the proposed algorithm to obtain effective original sensing data. The experimental evaluation results on real data sets show that CCS-SDC achieves the best effects, not only achieving lower sensing data communication cost than other related schemes, but also better protecting the confidentiality and integrity of sensing data, which is very useful for resource-constrained MCS data collection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助坚定惜梦采纳,获得10
刚刚
刚刚
liyongqing发布了新的文献求助10
2秒前
2秒前
如初完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
Jasper应助21随遇而安采纳,获得20
3秒前
edsenone发布了新的文献求助10
4秒前
灵巧寒凡发布了新的文献求助10
4秒前
1233完成签到,获得积分20
4秒前
Clover完成签到,获得积分10
4秒前
fox2shj完成签到,获得积分10
5秒前
起起完成签到,获得积分10
6秒前
7秒前
wuyu完成签到,获得积分10
10秒前
世佳何完成签到,获得积分10
10秒前
蒲柳发布了新的文献求助10
11秒前
丘比特应助苹果音响采纳,获得10
11秒前
曙光完成签到 ,获得积分10
12秒前
Cloud完成签到,获得积分0
12秒前
14秒前
14秒前
15秒前
15秒前
单身的淇完成签到 ,获得积分10
19秒前
19秒前
美丽晓蓝发布了新的文献求助10
19秒前
20秒前
zyy0910发布了新的文献求助10
20秒前
George完成签到,获得积分10
20秒前
11发布了新的文献求助10
21秒前
壮观小懒虫完成签到 ,获得积分10
22秒前
wp完成签到,获得积分10
22秒前
22秒前
好问题发布了新的文献求助10
23秒前
li发布了新的文献求助10
23秒前
24秒前
Yet_S完成签到,获得积分10
24秒前
yn发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419649
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147178
捐赠科研通 4451527
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617