Privacy-security oriented chaotic compressed sensing data collection in edge-assisted mobile crowd sensing

计算机科学 加密 上传 散列函数 数据收集 GSM演进的增强数据速率 数据完整性 压缩传感 数据安全 哈希表 密码学 实时计算 计算机网络 计算机安全 算法 电信 统计 数学 操作系统
作者
Yanming Fu,Bocheng Huang,Lin Li,Jiayuan Chen,Wei Wei
出处
期刊:Ad hoc networks [Elsevier BV]
卷期号:160: 103507-103507 被引量:1
标识
DOI:10.1016/j.adhoc.2024.103507
摘要

As a data-centric network, the Mobile Crowd Sensing (MCS) collects and uploads sensing data through intelligent terminal devices carried by workers. However, due to resource limitations, the confidentiality, integrity and communication cost issues of sensing data have not been well coordinated and resolved in the actual MCS data collection process. In this regard, this paper proposes an edge computing-assisted MCS Chaotic Compressed Sensing Secure Data Collection scheme (CCS-SDC), which supports the secure collection of sensing data and saves communication cost. In CCS-SDC, workers first use the encryption algorithm based on chaos theory to encrypt the collected sensing data, and then adopt the hash location algorithm based on chaos theory to calculate the corresponding hash verification code of the sensing data. After receiving the encrypted sensing data transmitted by the worker, the edge server recomputes the hash verification code of the encrypted sensing data and verifies the integrity of the data, which can locate the changed sensing task data to a certain extent. Then the sensing data is compressed and sampled based on the generated chaos measurement matrix to reduce the amount of data transmission and further enhance the confidentiality of the sensing data. In addition, the same hash positioning algorithm is used between the edge server and the sensing platform to protect data integrity. For the changed data located by integrity verification, in addition to choosing to let workers re-sense and submit, the sensing platform can also choose to discard the changed sensing data under appropriate circumstances, and still reconstruct and decrypt the remaining data through the proposed algorithm to obtain effective original sensing data. The experimental evaluation results on real data sets show that CCS-SDC achieves the best effects, not only achieving lower sensing data communication cost than other related schemes, but also better protecting the confidentiality and integrity of sensing data, which is very useful for resource-constrained MCS data collection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西门追命完成签到,获得积分10
刚刚
Laisy完成签到,获得积分10
1秒前
小刘完成签到,获得积分10
1秒前
Zzzz发布了新的文献求助10
1秒前
foxp3发布了新的文献求助10
1秒前
Orange应助abby123采纳,获得30
1秒前
Hou发布了新的文献求助10
1秒前
熙梓日记完成签到,获得积分10
1秒前
日落秋水发布了新的文献求助20
2秒前
2秒前
xlj完成签到,获得积分10
2秒前
NexusExplorer应助lseonf采纳,获得10
3秒前
贪玩钢铁侠完成签到,获得积分10
3秒前
呼呼虫发布了新的文献求助10
3秒前
高某完成签到,获得积分10
3秒前
斯文败类应助HHCC采纳,获得10
3秒前
wangerer完成签到,获得积分10
3秒前
天才Kitty猫完成签到,获得积分10
3秒前
yan123完成签到,获得积分10
3秒前
briliian完成签到,获得积分10
3秒前
北落发布了新的文献求助30
4秒前
cmxx发布了新的文献求助10
4秒前
刻刻完成签到,获得积分10
4秒前
zyfzyf完成签到,获得积分10
4秒前
大号安全蛋完成签到,获得积分10
4秒前
热心市民小红花应助考拉采纳,获得10
5秒前
zx598376321完成签到,获得积分10
5秒前
6秒前
陈晨完成签到,获得积分10
6秒前
花火完成签到 ,获得积分10
6秒前
6秒前
szj完成签到,获得积分0
6秒前
nater3ver完成签到,获得积分10
6秒前
俄歇电子发布了新的文献求助10
6秒前
111完成签到 ,获得积分10
7秒前
线条完成签到,获得积分10
7秒前
香蕉秋寒完成签到,获得积分10
7秒前
YW完成签到,获得积分10
7秒前
8秒前
风信子完成签到,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953576
求助须知:如何正确求助?哪些是违规求助? 3499159
关于积分的说明 11094348
捐赠科研通 3229748
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478